The ANSS event ID is ak0191piyf73 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0191piyf73/executive.
2019/02/06 20:27:59 61.376 -150.025 43.0 3.6 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/02/06 20:27:59:0 61.38 -150.02 43.0 3.6 Alaska Stations used: AK.GHO AK.KNK AK.PWL AK.RC01 AK.SAW AK.SSN AT.PMR AV.STLK GM.AD09 TA.M22K TA.O22K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 3.51e+21 dyne-cm Mw = 3.63 Z = 39 km Plane Strike Dip Rake NP1 230 75 -55 NP2 340 38 -155 Principal Axes: Axis Value Plunge Azimuth T 3.51e+21 22 294 N 0.00e+00 34 40 P -3.51e+21 48 177 Moment Tensor: (dyne-cm) Component Value Mxx -1.07e+21 Mxy -1.04e+21 Mxz 2.24e+21 Myy 2.51e+21 Myz -1.20e+21 Mzz -1.44e+21 ##------------ ############---------- ##################---------- #####################--------- #########################----##### ##########################-######### ### ##################-----######### #### T ###############---------######### #### #############------------######## ##################----------------######## ################------------------######## ##############--------------------######## ############-----------------------####### ##########------------------------###### ########--------------------------###### ######------------ -----------###### ####------------- P -----------##### ##-------------- ----------##### --------------------------#### ------------------------#### --------------------## -------------- Global CMT Convention Moment Tensor: R T P -1.44e+21 2.24e+21 1.20e+21 2.24e+21 -1.07e+21 1.04e+21 1.20e+21 1.04e+21 2.51e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190206202759/index.html |
STK = 230 DIP = 75 RAKE = -55 MW = 3.63 HS = 39.0
The NDK file is 20190206202759.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 320 75 15 2.90 0.1887 WVFGRD96 2.0 320 75 15 3.12 0.3323 WVFGRD96 3.0 140 75 10 3.19 0.3819 WVFGRD96 4.0 140 70 10 3.24 0.4152 WVFGRD96 5.0 320 90 40 3.31 0.4453 WVFGRD96 6.0 130 55 -25 3.34 0.4766 WVFGRD96 7.0 135 45 -10 3.35 0.4970 WVFGRD96 8.0 135 40 -10 3.40 0.5065 WVFGRD96 9.0 130 45 -20 3.41 0.5145 WVFGRD96 10.0 130 45 -25 3.42 0.5193 WVFGRD96 11.0 130 45 -25 3.43 0.5220 WVFGRD96 12.0 130 50 -25 3.43 0.5245 WVFGRD96 13.0 130 50 -25 3.44 0.5262 WVFGRD96 14.0 130 50 -25 3.45 0.5269 WVFGRD96 15.0 130 50 -25 3.46 0.5275 WVFGRD96 16.0 130 50 -25 3.46 0.5279 WVFGRD96 17.0 130 50 -25 3.47 0.5279 WVFGRD96 18.0 130 50 -25 3.48 0.5276 WVFGRD96 19.0 130 50 -25 3.49 0.5276 WVFGRD96 20.0 130 50 -25 3.50 0.5272 WVFGRD96 21.0 135 50 -10 3.50 0.5279 WVFGRD96 22.0 135 50 -10 3.51 0.5291 WVFGRD96 23.0 135 50 -10 3.52 0.5301 WVFGRD96 24.0 160 40 15 3.52 0.5321 WVFGRD96 25.0 160 40 15 3.53 0.5356 WVFGRD96 26.0 160 40 15 3.54 0.5383 WVFGRD96 27.0 160 40 15 3.55 0.5416 WVFGRD96 28.0 35 85 50 3.59 0.5479 WVFGRD96 29.0 35 85 50 3.60 0.5549 WVFGRD96 30.0 210 90 -45 3.61 0.5553 WVFGRD96 31.0 35 85 50 3.62 0.5635 WVFGRD96 32.0 35 85 50 3.62 0.5663 WVFGRD96 33.0 35 85 50 3.62 0.5671 WVFGRD96 34.0 35 85 50 3.63 0.5680 WVFGRD96 35.0 35 85 45 3.63 0.5680 WVFGRD96 36.0 235 80 -60 3.63 0.5698 WVFGRD96 37.0 230 75 -60 3.63 0.5742 WVFGRD96 38.0 230 75 -55 3.63 0.5793 WVFGRD96 39.0 230 75 -55 3.63 0.5825 WVFGRD96 40.0 220 80 -65 3.74 0.5804 WVFGRD96 41.0 220 80 -65 3.74 0.5795 WVFGRD96 42.0 215 75 -65 3.74 0.5783 WVFGRD96 43.0 215 75 -65 3.75 0.5780 WVFGRD96 44.0 215 75 -65 3.76 0.5769 WVFGRD96 45.0 215 75 -65 3.76 0.5761 WVFGRD96 46.0 215 75 -65 3.76 0.5740 WVFGRD96 47.0 210 70 -65 3.77 0.5741 WVFGRD96 48.0 210 70 -65 3.77 0.5727 WVFGRD96 49.0 210 70 -65 3.78 0.5729 WVFGRD96 50.0 210 70 -65 3.78 0.5713 WVFGRD96 51.0 210 70 -65 3.79 0.5707 WVFGRD96 52.0 210 70 -65 3.79 0.5694 WVFGRD96 53.0 210 70 -65 3.79 0.5690 WVFGRD96 54.0 210 70 -65 3.80 0.5686 WVFGRD96 55.0 210 70 -65 3.80 0.5670 WVFGRD96 56.0 210 70 -65 3.80 0.5682 WVFGRD96 57.0 210 70 -65 3.81 0.5668 WVFGRD96 58.0 210 70 -65 3.81 0.5663 WVFGRD96 59.0 210 70 -65 3.81 0.5647
The best solution is
WVFGRD96 39.0 230 75 -55 3.63 0.5825
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00