The ANSS event ID is ak01912e2f51 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak01912e2f51/executive.
2019/01/23 21:34:23 63.237 -150.573 129.1 3.9 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/01/23 21:34:23:0 63.24 -150.57 129.1 3.9 Alaska Stations used: AK.BPAW AK.CAST AK.CUT AK.KTH AK.MCK AK.RND AK.SKN AK.SSN AK.TRF AK.WRH AT.TTA TA.H21K TA.J19K TA.J20K TA.J25K TA.K20K TA.M22K Filtering commands used: cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.11e+22 dyne-cm Mw = 4.15 Z = 136 km Plane Strike Dip Rake NP1 204 83 -103 NP2 85 15 -30 Principal Axes: Axis Value Plunge Azimuth T 2.11e+22 36 306 N 0.00e+00 13 206 P -2.11e+22 51 100 Moment Tensor: (dyne-cm) Component Value Mxx 4.42e+21 Mxy -5.12e+21 Mxz 7.58e+21 Myy 8.63e+20 Myz -1.84e+22 Mzz -5.28e+21 ############## ##################---- ####################-------- ####################---------- #####################------------- ###### ############--------------- ####### T ###########----------------- ######## ##########------------------- ####################-------------------- ####################---------------------- ###################---------- ---------- ###################---------- P ---------# -#################----------- ---------# ################-----------------------# -##############-----------------------## -#############----------------------## -###########----------------------## --########---------------------### --######-------------------### ----##-----------------##### ---####-------######## ############## Global CMT Convention Moment Tensor: R T P -5.28e+21 7.58e+21 1.84e+22 7.58e+21 4.42e+21 5.12e+21 1.84e+22 5.12e+21 8.63e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190123213423/index.html |
STK = 85 DIP = 15 RAKE = -30 MW = 4.15 HS = 136.0
The NDK file is 20190123213423.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 35 45 75 3.28 0.1547 WVFGRD96 4.0 185 55 30 3.28 0.1621 WVFGRD96 6.0 185 65 25 3.31 0.1820 WVFGRD96 8.0 185 70 30 3.38 0.1972 WVFGRD96 10.0 350 75 -40 3.42 0.2096 WVFGRD96 12.0 350 70 -40 3.46 0.2205 WVFGRD96 14.0 355 70 -35 3.49 0.2266 WVFGRD96 16.0 -5 70 -35 3.52 0.2283 WVFGRD96 18.0 -5 70 -30 3.54 0.2264 WVFGRD96 20.0 5 75 -25 3.57 0.2226 WVFGRD96 22.0 5 70 -25 3.59 0.2187 WVFGRD96 24.0 5 70 -20 3.61 0.2111 WVFGRD96 26.0 100 70 30 3.61 0.2012 WVFGRD96 28.0 105 70 25 3.64 0.2016 WVFGRD96 30.0 105 70 20 3.66 0.2021 WVFGRD96 32.0 105 75 15 3.68 0.2025 WVFGRD96 34.0 105 75 15 3.70 0.2023 WVFGRD96 36.0 105 80 10 3.72 0.2030 WVFGRD96 38.0 105 80 10 3.75 0.2043 WVFGRD96 40.0 105 75 20 3.79 0.2060 WVFGRD96 42.0 105 80 15 3.81 0.2083 WVFGRD96 44.0 105 85 10 3.83 0.2123 WVFGRD96 46.0 285 90 -5 3.85 0.2173 WVFGRD96 48.0 285 80 10 3.86 0.2267 WVFGRD96 50.0 285 80 10 3.88 0.2372 WVFGRD96 52.0 285 80 10 3.90 0.2470 WVFGRD96 54.0 285 80 15 3.91 0.2564 WVFGRD96 56.0 285 80 15 3.93 0.2647 WVFGRD96 58.0 285 80 15 3.94 0.2707 WVFGRD96 60.0 285 80 15 3.95 0.2762 WVFGRD96 62.0 285 80 15 3.96 0.2817 WVFGRD96 64.0 285 80 15 3.97 0.2877 WVFGRD96 66.0 285 80 15 3.98 0.2941 WVFGRD96 68.0 285 80 15 3.99 0.3044 WVFGRD96 70.0 285 85 15 4.01 0.3141 WVFGRD96 72.0 285 85 15 4.02 0.3245 WVFGRD96 74.0 105 85 -10 4.03 0.3332 WVFGRD96 76.0 100 80 -15 4.02 0.3445 WVFGRD96 78.0 100 65 -10 4.02 0.3547 WVFGRD96 80.0 120 35 10 4.03 0.3787 WVFGRD96 82.0 115 30 5 4.04 0.4174 WVFGRD96 84.0 115 30 5 4.06 0.4536 WVFGRD96 86.0 115 25 5 4.07 0.4840 WVFGRD96 88.0 115 25 5 4.08 0.5073 WVFGRD96 90.0 110 20 0 4.08 0.5195 WVFGRD96 92.0 110 20 0 4.09 0.5309 WVFGRD96 94.0 110 20 0 4.09 0.5402 WVFGRD96 96.0 110 20 0 4.10 0.5482 WVFGRD96 98.0 105 15 -5 4.10 0.5576 WVFGRD96 100.0 105 15 -5 4.11 0.5651 WVFGRD96 102.0 100 15 -10 4.11 0.5727 WVFGRD96 104.0 100 15 -10 4.11 0.5802 WVFGRD96 106.0 100 15 -10 4.12 0.5865 WVFGRD96 108.0 85 15 -25 4.12 0.5927 WVFGRD96 110.0 70 10 -40 4.12 0.6005 WVFGRD96 112.0 70 10 -40 4.13 0.6083 WVFGRD96 114.0 75 10 -35 4.13 0.6144 WVFGRD96 116.0 75 10 -35 4.13 0.6193 WVFGRD96 118.0 75 10 -35 4.13 0.6245 WVFGRD96 120.0 75 10 -35 4.14 0.6289 WVFGRD96 122.0 75 10 -35 4.14 0.6324 WVFGRD96 124.0 75 10 -35 4.14 0.6365 WVFGRD96 126.0 75 10 -35 4.14 0.6380 WVFGRD96 128.0 85 15 -25 4.14 0.6399 WVFGRD96 130.0 85 15 -25 4.14 0.6428 WVFGRD96 132.0 85 15 -25 4.14 0.6436 WVFGRD96 134.0 85 15 -30 4.15 0.6432 WVFGRD96 136.0 85 15 -30 4.15 0.6454 WVFGRD96 138.0 85 15 -25 4.15 0.6453 WVFGRD96 140.0 85 15 -30 4.15 0.6440 WVFGRD96 142.0 85 15 -30 4.15 0.6448 WVFGRD96 144.0 85 15 -30 4.15 0.6444 WVFGRD96 146.0 85 15 -30 4.15 0.6423 WVFGRD96 148.0 85 15 -30 4.16 0.6419 WVFGRD96 150.0 85 15 -30 4.16 0.6403 WVFGRD96 152.0 85 15 -30 4.16 0.6380 WVFGRD96 154.0 85 15 -30 4.16 0.6366 WVFGRD96 156.0 85 15 -30 4.16 0.6353 WVFGRD96 158.0 85 15 -30 4.16 0.6327
The best solution is
WVFGRD96 136.0 85 15 -30 4.15 0.6454
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00