The ANSS event ID is ak019lrs7iu and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak019lrs7iu/executive.
2019/01/13 16:45:55 61.299 -150.065 44.8 5 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/01/13 16:45:55:0 61.30 -150.07 44.8 5.0 Alaska Stations used: AK.BRLK AK.CAST AK.CNP AK.CUT AK.GHO AK.GLB AK.HDA AK.HOM AK.KNK AK.KTH AK.PAX AK.PWL AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SWD AK.WRH AT.MENT AT.PMR AV.ILSW AV.STLK GM.AD09 GM.AD13 IU.COLA TA.I23K TA.J18K TA.K20K TA.M22K TA.M26K TA.N19K TA.N25K TA.O22K TA.P19K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.63e+23 dyne-cm Mw = 4.88 Z = 46 km Plane Strike Dip Rake NP1 200 65 -60 NP2 326 38 -137 Principal Axes: Axis Value Plunge Azimuth T 2.63e+23 15 269 N 0.00e+00 27 6 P -2.63e+23 59 153 Moment Tensor: (dyne-cm) Component Value Mxx -5.62e+22 Mxy 3.52e+22 Mxz 1.02e+23 Myy 2.31e+23 Myz -1.19e+23 Mzz -1.74e+23 -------------- -####----------####### ###############-############ ###############----########### ################-------########### ################----------########## ################-------------######### ################---------------######### ###############-----------------######## ###############-------------------######## ## ##########--------------------####### ## T #########---------------------####### ## #########----------------------###### ############---------- ----------##### ############---------- P ----------##### ###########---------- ----------#### #########-----------------------#### ########-----------------------### #######---------------------## ######--------------------## ###------------------- -------------- Global CMT Convention Moment Tensor: R T P -1.74e+23 1.02e+23 1.19e+23 1.02e+23 -5.62e+22 -3.52e+22 1.19e+23 -3.52e+22 2.31e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190113164555/index.html |
STK = 200 DIP = 65 RAKE = -60 MW = 4.88 HS = 46.0
The NDK file is 20190113164555.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 10 45 90 4.08 0.1781 WVFGRD96 2.0 185 45 85 4.23 0.2464 WVFGRD96 3.0 180 45 80 4.28 0.2445 WVFGRD96 4.0 145 90 -30 4.22 0.2399 WVFGRD96 5.0 300 60 -20 4.26 0.2526 WVFGRD96 6.0 300 55 -20 4.29 0.2678 WVFGRD96 7.0 240 60 25 4.31 0.2856 WVFGRD96 8.0 240 60 35 4.38 0.3059 WVFGRD96 9.0 240 60 30 4.39 0.3235 WVFGRD96 10.0 240 65 30 4.41 0.3379 WVFGRD96 11.0 240 65 30 4.43 0.3496 WVFGRD96 12.0 240 65 30 4.45 0.3597 WVFGRD96 13.0 240 65 30 4.46 0.3673 WVFGRD96 14.0 240 65 30 4.47 0.3727 WVFGRD96 15.0 55 65 25 4.48 0.3813 WVFGRD96 16.0 60 65 30 4.50 0.3910 WVFGRD96 17.0 60 65 30 4.51 0.4009 WVFGRD96 18.0 45 75 35 4.52 0.4106 WVFGRD96 19.0 45 75 35 4.54 0.4202 WVFGRD96 20.0 45 75 35 4.55 0.4292 WVFGRD96 21.0 45 75 40 4.57 0.4374 WVFGRD96 22.0 45 75 40 4.58 0.4473 WVFGRD96 23.0 45 75 40 4.59 0.4563 WVFGRD96 24.0 45 75 40 4.60 0.4644 WVFGRD96 25.0 40 85 40 4.61 0.4718 WVFGRD96 26.0 40 85 40 4.62 0.4807 WVFGRD96 27.0 40 85 40 4.63 0.4892 WVFGRD96 28.0 215 85 -40 4.64 0.4988 WVFGRD96 29.0 35 90 40 4.65 0.5060 WVFGRD96 30.0 215 85 -45 4.66 0.5173 WVFGRD96 31.0 215 80 -45 4.66 0.5266 WVFGRD96 32.0 210 75 -45 4.67 0.5370 WVFGRD96 33.0 210 75 -45 4.68 0.5467 WVFGRD96 34.0 210 70 -45 4.69 0.5561 WVFGRD96 35.0 210 75 -45 4.70 0.5633 WVFGRD96 36.0 210 70 -45 4.71 0.5683 WVFGRD96 37.0 210 70 -45 4.72 0.5725 WVFGRD96 38.0 205 70 -50 4.73 0.5766 WVFGRD96 39.0 205 70 -45 4.74 0.5807 WVFGRD96 40.0 205 70 -60 4.83 0.5820 WVFGRD96 41.0 205 70 -60 4.84 0.5886 WVFGRD96 42.0 205 70 -60 4.85 0.5941 WVFGRD96 43.0 205 70 -60 4.86 0.5974 WVFGRD96 44.0 205 70 -60 4.87 0.5995 WVFGRD96 45.0 200 65 -60 4.87 0.6018 WVFGRD96 46.0 200 65 -60 4.88 0.6026 WVFGRD96 47.0 200 65 -60 4.89 0.6024 WVFGRD96 48.0 200 65 -60 4.89 0.6013 WVFGRD96 49.0 200 65 -60 4.90 0.5988 WVFGRD96 50.0 200 65 -60 4.90 0.5957 WVFGRD96 51.0 200 65 -65 4.91 0.5923 WVFGRD96 52.0 200 65 -65 4.92 0.5879 WVFGRD96 53.0 200 65 -65 4.92 0.5836 WVFGRD96 54.0 200 65 -65 4.92 0.5779 WVFGRD96 55.0 200 65 -65 4.92 0.5719 WVFGRD96 56.0 200 65 -65 4.93 0.5661 WVFGRD96 57.0 200 65 -65 4.93 0.5594 WVFGRD96 58.0 200 65 -65 4.93 0.5522 WVFGRD96 59.0 195 65 -65 4.93 0.5454
The best solution is
WVFGRD96 46.0 200 65 -60 4.88 0.6026
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00