Location

Location ANSS

The ANSS event ID is ak019i8au86 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak019i8au86/executive.

2019/01/11 02:33:38 61.471 -149.899 49.8 4.6 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2019/01/11 02:33:38:0  61.47 -149.90  49.8 4.6 Alaska
 
 Stations used:
   AK.BRLK AK.CAST AK.CUT AK.FIRE AK.GHO AK.KNK AK.RC01 AK.SAW 
   AK.SKN AK.SLK AT.PMR AV.STLK TA.M22K TA.O22K 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 7.85e+22 dyne-cm
  Mw = 4.53 
  Z  = 58 km
  Plane   Strike  Dip  Rake
   NP1      150    70   -70
   NP2      283    28   -133
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.85e+22     22     225
    N   0.00e+00     19     323
    P  -7.85e+22     60      89

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.37e+22
       Mxy     3.32e+22
       Mxz    -2.03e+22
       Myy     1.37e+22
       Myz    -5.35e+22
       Mzz    -4.74e+22
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 -#####################              
              ----########################           
             ---------------------#########          
           ----###--------------------#######        
          --######-----------------------#####       
         -#########------------------------####      
        -##########-------------------------####     
        ############-------------------------###     
       ##############-------------   ---------###    
       ###############------------ P ----------##    
       ################-----------   -----------#    
       #################------------------------#    
        #################-----------------------     
        ##################----------------------     
         ##################--------------------      
          #####   ###########-----------------       
           #### T #############--------------        
             ##   ##############-----------          
              #####################-------           
                 #####################-              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.74e+22  -2.03e+22   5.35e+22 
 -2.03e+22   3.37e+22  -3.32e+22 
  5.35e+22  -3.32e+22   1.37e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190111023338/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 150
      DIP = 70
     RAKE = -70
       MW = 4.53
       HS = 58.0

The NDK file is 20190111023338.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2019/01/11 02:33:38:0  61.47 -149.90  49.8 4.6 Alaska
 
 Stations used:
   AK.BRLK AK.CAST AK.CUT AK.FIRE AK.GHO AK.KNK AK.RC01 AK.SAW 
   AK.SKN AK.SLK AT.PMR AV.STLK TA.M22K TA.O22K 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 7.85e+22 dyne-cm
  Mw = 4.53 
  Z  = 58 km
  Plane   Strike  Dip  Rake
   NP1      150    70   -70
   NP2      283    28   -133
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.85e+22     22     225
    N   0.00e+00     19     323
    P  -7.85e+22     60      89

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.37e+22
       Mxy     3.32e+22
       Mxz    -2.03e+22
       Myy     1.37e+22
       Myz    -5.35e+22
       Mzz    -4.74e+22
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 -#####################              
              ----########################           
             ---------------------#########          
           ----###--------------------#######        
          --######-----------------------#####       
         -#########------------------------####      
        -##########-------------------------####     
        ############-------------------------###     
       ##############-------------   ---------###    
       ###############------------ P ----------##    
       ################-----------   -----------#    
       #################------------------------#    
        #################-----------------------     
        ##################----------------------     
         ##################--------------------      
          #####   ###########-----------------       
           #### T #############--------------        
             ##   ##############-----------          
              #####################-------           
                 #####################-              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.74e+22  -2.03e+22   5.35e+22 
 -2.03e+22   3.37e+22  -3.32e+22 
  5.35e+22  -3.32e+22   1.37e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190111023338/index.html
	
Regional Moment Tensor (Mwr)
Moment
5.214e+15 N-m
Magnitude
4.41 Mwr
Depth
49.0 km
Percent DC
95%
Half Duration
-
Catalog US
Data Source US 3
Contributor US 3
Nodal Planes
Plane Strike Dip Rake
NP1 304 16 -124
NP2 159 76 -81
Principal Axes
Axis Value Plunge Azimuth
T 5.284e+15 N-m 31 241
N -0.144e+15 N-m 9 337
P -5.140e+15 N-m 58 81°

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    45    85    -5   3.67 0.1947
WVFGRD96    2.0   310    40    90   3.80 0.2410
WVFGRD96    3.0   140    70    30   3.89 0.2640
WVFGRD96    4.0   135    80    20   3.93 0.2926
WVFGRD96    5.0   135    80    15   3.97 0.3138
WVFGRD96    6.0   315    85   -25   3.99 0.3310
WVFGRD96    7.0   315    85   -20   4.02 0.3579
WVFGRD96    8.0   315    85   -25   4.07 0.3855
WVFGRD96    9.0   315    85   -20   4.10 0.4027
WVFGRD96   10.0   315    85   -20   4.12 0.4162
WVFGRD96   11.0   315    85   -20   4.13 0.4236
WVFGRD96   12.0   315    85   -20   4.14 0.4271
WVFGRD96   13.0   315    80   -20   4.15 0.4290
WVFGRD96   14.0   315    80   -20   4.16 0.4296
WVFGRD96   15.0   135    90    20   4.17 0.4289
WVFGRD96   16.0   135    90    20   4.18 0.4295
WVFGRD96   17.0   135    90    20   4.19 0.4280
WVFGRD96   18.0   135    75     0   4.22 0.4302
WVFGRD96   19.0   135    75     5   4.23 0.4322
WVFGRD96   20.0   135    75     5   4.24 0.4340
WVFGRD96   21.0   135    70     0   4.24 0.4338
WVFGRD96   22.0   140    65     5   4.23 0.4349
WVFGRD96   23.0   140    65     5   4.24 0.4368
WVFGRD96   24.0   140    60     5   4.25 0.4381
WVFGRD96   25.0   140    60     5   4.26 0.4397
WVFGRD96   26.0   140    60     5   4.27 0.4411
WVFGRD96   27.0    40    60   -10   4.27 0.4410
WVFGRD96   28.0    40    60   -10   4.28 0.4421
WVFGRD96   29.0    40    30    10   4.26 0.4466
WVFGRD96   30.0    35    30     5   4.27 0.4518
WVFGRD96   31.0    30    25    -5   4.27 0.4581
WVFGRD96   32.0    30    30    -5   4.29 0.4644
WVFGRD96   33.0    25    25   -15   4.29 0.4713
WVFGRD96   34.0    25    25   -15   4.29 0.4767
WVFGRD96   35.0   150    80   -80   4.27 0.4830
WVFGRD96   36.0   150    80   -80   4.28 0.4958
WVFGRD96   37.0   150    75   -75   4.29 0.5088
WVFGRD96   38.0   150    75   -75   4.29 0.5235
WVFGRD96   39.0   150    75   -70   4.30 0.5348
WVFGRD96   40.0   150    75   -80   4.43 0.5349
WVFGRD96   41.0   150    75   -80   4.44 0.5404
WVFGRD96   42.0   150    75   -80   4.44 0.5444
WVFGRD96   43.0   150    75   -80   4.45 0.5510
WVFGRD96   44.0   150    75   -80   4.46 0.5555
WVFGRD96   45.0   150    75   -80   4.46 0.5610
WVFGRD96   46.0   150    75   -75   4.47 0.5658
WVFGRD96   47.0   150    75   -80   4.48 0.5697
WVFGRD96   48.0   150    75   -75   4.48 0.5744
WVFGRD96   49.0   150    75   -75   4.49 0.5786
WVFGRD96   50.0   150    70   -75   4.49 0.5810
WVFGRD96   51.0   150    70   -75   4.50 0.5849
WVFGRD96   52.0   150    70   -75   4.50 0.5894
WVFGRD96   53.0   150    70   -75   4.51 0.5907
WVFGRD96   54.0   150    70   -75   4.52 0.5937
WVFGRD96   55.0   150    70   -75   4.52 0.5952
WVFGRD96   56.0   150    70   -75   4.52 0.5957
WVFGRD96   57.0   150    70   -75   4.53 0.5962
WVFGRD96   58.0   150    70   -70   4.53 0.5964
WVFGRD96   59.0   150    70   -70   4.54 0.5962
WVFGRD96   60.0   150    70   -70   4.54 0.5934
WVFGRD96   61.0   150    70   -70   4.54 0.5938
WVFGRD96   62.0   150    70   -70   4.55 0.5917
WVFGRD96   63.0   150    70   -70   4.55 0.5894
WVFGRD96   64.0   150    70   -70   4.55 0.5864
WVFGRD96   65.0   130    65   -55   4.59 0.5862
WVFGRD96   66.0   130    65   -55   4.60 0.5846
WVFGRD96   67.0   130    65   -55   4.60 0.5824
WVFGRD96   68.0   130    65   -55   4.60 0.5802
WVFGRD96   69.0   130    65   -55   4.61 0.5780

The best solution is

WVFGRD96   58.0   150    70   -70   4.53 0.5964

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 07:51:51 AM CDT 2024