The ANSS event ID is ak019gjee93 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak019gjee93/executive.
2019/01/10 00:04:31 61.449 -149.883 32.3 4 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/01/10 00:04:31:0 61.45 -149.88 32.3 4.0 Alaska Stations used: AK.FID AK.FIRE AK.GHO AK.KLU AK.KNK AK.KTH AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SKN AK.SLK AK.SWD AT.PMR AV.STLK TA.M20K TA.M22K TA.N25K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 1.35e+22 dyne-cm Mw = 4.02 Z = 47 km Plane Strike Dip Rake NP1 165 55 -70 NP2 313 40 -116 Principal Axes: Axis Value Plunge Azimuth T 1.35e+22 8 241 N 0.00e+00 16 333 P -1.35e+22 72 126 Moment Tensor: (dyne-cm) Component Value Mxx 2.69e+21 Mxy 6.25e+21 Mxz 1.43e+21 Myy 9.22e+21 Myz -4.87e+21 Mzz -1.19e+22 -############# ----################## -------##################### ######----------############## ########--------------############ #########----------------########### #########-------------------########## ##########---------------------######### ##########----------------------######## ############-----------------------####### ############-----------------------####### ############----------- ----------###### #############---------- P -----------##### ############---------- -----------#### #############-----------------------#### # #########----------------------### T ##########---------------------## ###########--------------------# ############------------------ #############--------------- ############---------- ###########--- Global CMT Convention Moment Tensor: R T P -1.19e+22 1.43e+21 4.87e+21 1.43e+21 2.69e+21 -6.25e+21 4.87e+21 -6.25e+21 9.22e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190110000431/index.html |
STK = 165 DIP = 55 RAKE = -70 MW = 4.02 HS = 47.0
The NDK file is 20190110000431.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2019/01/10 00:04:31:0 61.45 -149.88 32.3 4.0 Alaska Stations used: AK.FID AK.FIRE AK.GHO AK.KLU AK.KNK AK.KTH AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SKN AK.SLK AK.SWD AT.PMR AV.STLK TA.M20K TA.M22K TA.N25K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 1.35e+22 dyne-cm Mw = 4.02 Z = 47 km Plane Strike Dip Rake NP1 165 55 -70 NP2 313 40 -116 Principal Axes: Axis Value Plunge Azimuth T 1.35e+22 8 241 N 0.00e+00 16 333 P -1.35e+22 72 126 Moment Tensor: (dyne-cm) Component Value Mxx 2.69e+21 Mxy 6.25e+21 Mxz 1.43e+21 Myy 9.22e+21 Myz -4.87e+21 Mzz -1.19e+22 -############# ----################## -------##################### ######----------############## ########--------------############ #########----------------########### #########-------------------########## ##########---------------------######### ##########----------------------######## ############-----------------------####### ############-----------------------####### ############----------- ----------###### #############---------- P -----------##### ############---------- -----------#### #############-----------------------#### # #########----------------------### T ##########---------------------## ###########--------------------# ############------------------ #############--------------- ############---------- ###########--- Global CMT Convention Moment Tensor: R T P -1.19e+22 1.43e+21 4.87e+21 1.43e+21 2.69e+21 -6.25e+21 4.87e+21 -6.25e+21 9.22e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190110000431/index.html |
Regional Moment Tensor (Mwr) Moment 8.070e+14 N-m Magnitude 3.87 Mwr Depth 38.0 km Percent DC 90% Half Duration - Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 313 41 -129 NP2 180 60 -61 Principal Axes Axis Value Plunge Azimuth T 8.278e+14 N-m 10 250 N -0.435e+14 N-m 25 345 P -7.844e+14 N-m 63 139 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 325 45 90 3.25 0.2519 WVFGRD96 2.0 145 45 95 3.42 0.3823 WVFGRD96 3.0 325 45 90 3.47 0.3683 WVFGRD96 4.0 140 50 -90 3.51 0.3438 WVFGRD96 5.0 345 40 -50 3.52 0.3515 WVFGRD96 6.0 15 65 50 3.50 0.3621 WVFGRD96 7.0 15 60 45 3.51 0.3753 WVFGRD96 8.0 345 35 -50 3.59 0.3773 WVFGRD96 9.0 25 35 25 3.58 0.3788 WVFGRD96 10.0 25 40 30 3.58 0.3905 WVFGRD96 11.0 25 40 30 3.59 0.3999 WVFGRD96 12.0 20 45 25 3.59 0.4088 WVFGRD96 13.0 25 45 30 3.60 0.4167 WVFGRD96 14.0 25 45 30 3.61 0.4228 WVFGRD96 15.0 25 45 25 3.62 0.4277 WVFGRD96 16.0 25 45 25 3.62 0.4322 WVFGRD96 17.0 20 50 25 3.62 0.4361 WVFGRD96 18.0 20 50 25 3.63 0.4391 WVFGRD96 19.0 25 45 20 3.65 0.4415 WVFGRD96 20.0 165 35 -45 3.68 0.4497 WVFGRD96 21.0 165 35 -45 3.70 0.4584 WVFGRD96 22.0 165 35 -45 3.71 0.4668 WVFGRD96 23.0 170 40 -40 3.71 0.4757 WVFGRD96 24.0 165 40 -50 3.72 0.4844 WVFGRD96 25.0 165 40 -50 3.73 0.4934 WVFGRD96 26.0 165 40 -50 3.74 0.5019 WVFGRD96 27.0 165 40 -50 3.75 0.5097 WVFGRD96 28.0 170 45 -45 3.76 0.5189 WVFGRD96 29.0 170 45 -45 3.77 0.5289 WVFGRD96 30.0 170 45 -45 3.78 0.5384 WVFGRD96 31.0 165 45 -50 3.78 0.5474 WVFGRD96 32.0 165 45 -50 3.79 0.5553 WVFGRD96 33.0 170 50 -50 3.80 0.5631 WVFGRD96 34.0 170 50 -50 3.81 0.5710 WVFGRD96 35.0 170 50 -55 3.82 0.5780 WVFGRD96 36.0 170 50 -55 3.84 0.5841 WVFGRD96 37.0 165 50 -60 3.85 0.5895 WVFGRD96 38.0 165 50 -60 3.86 0.5928 WVFGRD96 39.0 165 50 -60 3.88 0.5953 WVFGRD96 40.0 160 50 -65 3.96 0.5973 WVFGRD96 41.0 160 50 -65 3.97 0.6055 WVFGRD96 42.0 160 50 -65 3.98 0.6112 WVFGRD96 43.0 160 50 -65 3.99 0.6160 WVFGRD96 44.0 170 55 -65 4.00 0.6193 WVFGRD96 45.0 170 55 -65 4.01 0.6218 WVFGRD96 46.0 165 55 -70 4.02 0.6233 WVFGRD96 47.0 165 55 -70 4.02 0.6238 WVFGRD96 48.0 165 55 -70 4.03 0.6236 WVFGRD96 49.0 165 55 -70 4.04 0.6223 WVFGRD96 50.0 165 55 -70 4.04 0.6202 WVFGRD96 51.0 165 55 -70 4.05 0.6171 WVFGRD96 52.0 165 55 -70 4.05 0.6136 WVFGRD96 53.0 165 55 -70 4.05 0.6090 WVFGRD96 54.0 165 55 -70 4.06 0.6043 WVFGRD96 55.0 165 55 -70 4.06 0.5985 WVFGRD96 56.0 165 55 -70 4.06 0.5920 WVFGRD96 57.0 165 55 -65 4.06 0.5863 WVFGRD96 58.0 165 55 -65 4.07 0.5789 WVFGRD96 59.0 165 55 -65 4.07 0.5720
The best solution is
WVFGRD96 47.0 165 55 -70 4.02 0.6238
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00