The ANSS event ID is ak0191pccr7 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0191pccr7/executive.
2019/01/01 03:03:30 61.297 -149.952 44.4 5 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/01/01 03:03:30:0 61.30 -149.95 44.4 5.0 Alaska Stations used: AK.CUT AK.DHY AK.GHO AK.GLI AK.KLU AK.KNK AK.KTH AK.PWL AK.RC01 AK.SAW AK.SCM AK.SKN AK.SLK AK.TRF AT.PMR AV.ILSW AV.SPU GM.AD13 TA.L19K TA.M20K TA.M22K TA.O22K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.63e+23 dyne-cm Mw = 4.88 Z = 48 km Plane Strike Dip Rake NP1 175 53 -106 NP2 20 40 -70 Principal Axes: Axis Value Plunge Azimuth T 2.63e+23 7 276 N 0.00e+00 13 184 P -2.63e+23 76 33 Moment Tensor: (dyne-cm) Component Value Mxx -8.70e+21 Mxy -3.39e+22 Mxz -5.01e+22 Myy 2.52e+23 Myz -6.39e+22 Mzz -2.43e+23 ####---------- ######--------------## ########----------------#### ########------------------#### #########--------------------##### ##########---------------------##### ##########----------------------###### ###########----------------------####### #########--------- ----------####### T #########--------- P ----------######## #########--------- ----------######## ############----------------------######## ############---------------------######### ###########---------------------######## ############-------------------######### ###########------------------######### ###########----------------######### ###########-------------########## ##########----------########## ##########-------########### #########--########### #------####### Global CMT Convention Moment Tensor: R T P -2.43e+23 -5.01e+22 6.39e+22 -5.01e+22 -8.70e+21 3.39e+22 6.39e+22 3.39e+22 2.52e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190101030330/index.html |
STK = 20 DIP = 40 RAKE = -70 MW = 4.88 HS = 48.0
The NDK file is 20190101030330.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2019/01/01 03:03:30:0 61.30 -149.95 44.4 5.0 Alaska Stations used: AK.CUT AK.DHY AK.GHO AK.GLI AK.KLU AK.KNK AK.KTH AK.PWL AK.RC01 AK.SAW AK.SCM AK.SKN AK.SLK AK.TRF AT.PMR AV.ILSW AV.SPU GM.AD13 TA.L19K TA.M20K TA.M22K TA.O22K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.63e+23 dyne-cm Mw = 4.88 Z = 48 km Plane Strike Dip Rake NP1 175 53 -106 NP2 20 40 -70 Principal Axes: Axis Value Plunge Azimuth T 2.63e+23 7 276 N 0.00e+00 13 184 P -2.63e+23 76 33 Moment Tensor: (dyne-cm) Component Value Mxx -8.70e+21 Mxy -3.39e+22 Mxz -5.01e+22 Myy 2.52e+23 Myz -6.39e+22 Mzz -2.43e+23 ####---------- ######--------------## ########----------------#### ########------------------#### #########--------------------##### ##########---------------------##### ##########----------------------###### ###########----------------------####### #########--------- ----------####### T #########--------- P ----------######## #########--------- ----------######## ############----------------------######## ############---------------------######### ###########---------------------######## ############-------------------######### ###########------------------######### ###########----------------######### ###########-------------########## ##########----------########## ##########-------########### #########--########### #------####### Global CMT Convention Moment Tensor: R T P -2.43e+23 -5.01e+22 6.39e+22 -5.01e+22 -8.70e+21 3.39e+22 6.39e+22 3.39e+22 2.52e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190101030330/index.html |
W-phase Moment Tensor (Mww) Moment 2.902e+16 N-m Magnitude 4.91 Mww Depth 45.5 km Percent DC 85% Half Duration 0.73 s Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 183 55 -99 NP2 19 36 -78 Principal Axes Axis Value Plunge Azimuth T 2.781e+16 N-m 9 280 N 0.230e+16 N-m 7 188 P -3.010e+16 N-m 78 61 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 180 50 85 3.98 0.1475 WVFGRD96 2.0 180 45 80 4.14 0.2038 WVFGRD96 3.0 160 50 55 4.17 0.2040 WVFGRD96 4.0 310 60 -35 4.16 0.2177 WVFGRD96 5.0 305 55 -30 4.20 0.2350 WVFGRD96 6.0 310 60 -25 4.22 0.2501 WVFGRD96 7.0 235 70 35 4.26 0.2705 WVFGRD96 8.0 235 70 40 4.33 0.2863 WVFGRD96 9.0 240 65 35 4.35 0.3013 WVFGRD96 10.0 240 65 35 4.37 0.3132 WVFGRD96 11.0 240 65 35 4.39 0.3203 WVFGRD96 12.0 240 65 35 4.41 0.3239 WVFGRD96 13.0 235 70 30 4.43 0.3265 WVFGRD96 14.0 235 70 30 4.44 0.3271 WVFGRD96 15.0 50 60 -15 4.44 0.3265 WVFGRD96 16.0 50 60 -15 4.45 0.3280 WVFGRD96 17.0 55 65 20 4.47 0.3294 WVFGRD96 18.0 55 65 20 4.48 0.3300 WVFGRD96 19.0 55 65 20 4.49 0.3296 WVFGRD96 20.0 55 65 20 4.50 0.3296 WVFGRD96 21.0 225 70 -35 4.53 0.3284 WVFGRD96 22.0 225 70 -35 4.54 0.3321 WVFGRD96 23.0 225 70 -35 4.55 0.3345 WVFGRD96 24.0 50 60 -15 4.54 0.3356 WVFGRD96 25.0 50 65 -10 4.54 0.3392 WVFGRD96 26.0 50 65 -10 4.55 0.3423 WVFGRD96 27.0 50 65 -10 4.56 0.3458 WVFGRD96 28.0 45 65 -25 4.58 0.3532 WVFGRD96 29.0 45 60 -30 4.59 0.3593 WVFGRD96 30.0 220 65 -40 4.62 0.3656 WVFGRD96 31.0 220 65 -40 4.62 0.3751 WVFGRD96 32.0 215 60 -50 4.64 0.3825 WVFGRD96 33.0 215 60 -50 4.65 0.3913 WVFGRD96 34.0 205 55 -65 4.66 0.3997 WVFGRD96 35.0 205 55 -65 4.67 0.4065 WVFGRD96 36.0 -5 40 -110 4.68 0.4099 WVFGRD96 37.0 -5 40 -110 4.69 0.4115 WVFGRD96 38.0 0 40 -100 4.70 0.4133 WVFGRD96 39.0 15 40 -80 4.72 0.4175 WVFGRD96 40.0 20 40 -70 4.80 0.4351 WVFGRD96 41.0 20 40 -70 4.81 0.4406 WVFGRD96 42.0 15 40 -75 4.83 0.4453 WVFGRD96 43.0 15 40 -75 4.84 0.4495 WVFGRD96 44.0 15 40 -75 4.85 0.4525 WVFGRD96 45.0 20 40 -70 4.86 0.4546 WVFGRD96 46.0 20 40 -70 4.87 0.4567 WVFGRD96 47.0 20 40 -70 4.88 0.4570 WVFGRD96 48.0 20 40 -70 4.88 0.4585 WVFGRD96 49.0 20 40 -70 4.89 0.4583 WVFGRD96 50.0 20 40 -70 4.90 0.4574 WVFGRD96 51.0 20 40 -70 4.90 0.4565 WVFGRD96 52.0 25 45 -65 4.91 0.4554 WVFGRD96 53.0 25 45 -65 4.91 0.4552 WVFGRD96 54.0 25 45 -65 4.91 0.4544 WVFGRD96 55.0 25 45 -60 4.91 0.4538 WVFGRD96 56.0 25 45 -60 4.92 0.4540 WVFGRD96 57.0 25 45 -60 4.92 0.4528 WVFGRD96 58.0 25 45 -60 4.92 0.4522 WVFGRD96 59.0 30 45 -55 4.92 0.4502
The best solution is
WVFGRD96 48.0 20 40 -70 4.88 0.4585
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00