The ANSS event ID is ak018gl9gvsc and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak018gl9gvsc/executive.
2018/12/27 14:21:13 61.286 -150.068 41.0 4.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2018/12/27 14:21:13:0 61.29 -150.07 41.0 4.8 Alaska Stations used: AK.BRLK AK.CAST AK.CNP AK.DHY AK.FID AK.GHO AK.GLB AK.GLI AK.HOM AK.KNK AK.KTH AK.PWL AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.SWD AK.VRDI AT.PMR AV.ILSW AV.SPU AV.STLK GM.AD09 GM.AD11 TA.M20K TA.O22K TA.P19K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.46e+23 dyne-cm Mw = 4.71 Z = 47 km Plane Strike Dip Rake NP1 185 75 -65 NP2 304 29 -148 Principal Axes: Axis Value Plunge Azimuth T 1.46e+23 26 256 N 0.00e+00 24 358 P -1.46e+23 53 125 Moment Tensor: (dyne-cm) Component Value Mxx -9.86e+21 Mxy 5.30e+22 Mxz 2.59e+22 Myy 7.61e+22 Myz -1.13e+23 Mzz -6.63e+22 --------###### -----------########### -----########--############# -#############-------######### ###############-----------######## ################-------------####### ################----------------###### #################-----------------###### #################-------------------#### #################--------------------##### #################---------------------#### #################----------------------### #### ##########---------- ---------### ### T ##########---------- P ---------## ### ##########---------- ---------## ###############----------------------# ##############---------------------- #############--------------------- ###########------------------- ###########----------------- ########-------------- #####--------- Global CMT Convention Moment Tensor: R T P -6.63e+22 2.59e+22 1.13e+23 2.59e+22 -9.86e+21 -5.30e+22 1.13e+23 -5.30e+22 7.61e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20181227142113/index.html |
STK = 185 DIP = 75 RAKE = -65 MW = 4.71 HS = 47.0
The NDK file is 20181227142113.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2018/12/27 14:21:13:0 61.29 -150.07 41.0 4.8 Alaska Stations used: AK.BRLK AK.CAST AK.CNP AK.DHY AK.FID AK.GHO AK.GLB AK.GLI AK.HOM AK.KNK AK.KTH AK.PWL AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.SWD AK.VRDI AT.PMR AV.ILSW AV.SPU AV.STLK GM.AD09 GM.AD11 TA.M20K TA.O22K TA.P19K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.46e+23 dyne-cm Mw = 4.71 Z = 47 km Plane Strike Dip Rake NP1 185 75 -65 NP2 304 29 -148 Principal Axes: Axis Value Plunge Azimuth T 1.46e+23 26 256 N 0.00e+00 24 358 P -1.46e+23 53 125 Moment Tensor: (dyne-cm) Component Value Mxx -9.86e+21 Mxy 5.30e+22 Mxz 2.59e+22 Myy 7.61e+22 Myz -1.13e+23 Mzz -6.63e+22 --------###### -----------########### -----########--############# -#############-------######### ###############-----------######## ################-------------####### ################----------------###### #################-----------------###### #################-------------------#### #################--------------------##### #################---------------------#### #################----------------------### #### ##########---------- ---------### ### T ##########---------- P ---------## ### ##########---------- ---------## ###############----------------------# ##############---------------------- #############--------------------- ###########------------------- ###########----------------- ########-------------- #####--------- Global CMT Convention Moment Tensor: R T P -6.63e+22 2.59e+22 1.13e+23 2.59e+22 -9.86e+21 -5.30e+22 1.13e+23 -5.30e+22 7.61e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20181227142113/index.html |
Regional Moment Tensor (Mwr) Moment 2.017e+16 N-m Magnitude 4.80 Mwr Depth 54.0 km Percent DC 79% Half Duration - Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 171 76 -107 NP2 42 22 -41 Principal Axes Axis Value Plunge Azimuth T 2.118e+16 N-m 29 274 N -0.218e+16 N-m 17 175 P -1.899e+16 N-m 56 58 |
W-phase Moment Tensor (Mww) Preferred Moment 2.107e+16 N-m Magnitude 4.82 Mww Depth 45.5 km Percent DC 84% Half Duration 0.66 s Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 305 28 -138 NP2 177 72 -68 Principal Axes Axis Value Plunge Azimuth T 2.015e+16 N-m 24 250 N 0.174e+16 N-m 21 350 P -2.189e+16 N-m 58 117 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 180 45 85 3.75 0.1283 WVFGRD96 2.0 185 45 90 3.92 0.1803 WVFGRD96 3.0 165 45 60 3.96 0.1614 WVFGRD96 4.0 155 45 35 3.96 0.1582 WVFGRD96 5.0 290 30 -10 3.97 0.1772 WVFGRD96 6.0 350 90 45 4.00 0.2027 WVFGRD96 7.0 150 80 -40 4.04 0.2258 WVFGRD96 8.0 155 85 -45 4.10 0.2428 WVFGRD96 9.0 155 85 -45 4.12 0.2604 WVFGRD96 10.0 165 80 -40 4.15 0.2769 WVFGRD96 11.0 165 80 -40 4.17 0.2920 WVFGRD96 12.0 240 60 40 4.21 0.3050 WVFGRD96 13.0 0 75 45 4.21 0.3193 WVFGRD96 14.0 0 75 45 4.22 0.3312 WVFGRD96 15.0 0 75 45 4.24 0.3419 WVFGRD96 16.0 0 75 45 4.26 0.3511 WVFGRD96 17.0 0 75 45 4.28 0.3590 WVFGRD96 18.0 0 80 45 4.29 0.3670 WVFGRD96 19.0 35 70 50 4.32 0.3745 WVFGRD96 20.0 35 70 50 4.34 0.3839 WVFGRD96 21.0 35 70 55 4.36 0.3941 WVFGRD96 22.0 35 70 55 4.38 0.4052 WVFGRD96 23.0 35 70 55 4.40 0.4157 WVFGRD96 24.0 25 80 55 4.40 0.4285 WVFGRD96 25.0 25 80 55 4.41 0.4422 WVFGRD96 26.0 20 85 50 4.42 0.4570 WVFGRD96 27.0 20 85 50 4.44 0.4716 WVFGRD96 28.0 20 85 55 4.45 0.4846 WVFGRD96 29.0 20 85 55 4.47 0.4967 WVFGRD96 30.0 25 85 55 4.48 0.5106 WVFGRD96 31.0 20 90 55 4.49 0.5248 WVFGRD96 32.0 20 90 60 4.50 0.5407 WVFGRD96 33.0 20 90 60 4.51 0.5543 WVFGRD96 34.0 20 90 60 4.52 0.5664 WVFGRD96 35.0 195 85 -60 4.52 0.5805 WVFGRD96 36.0 195 85 -60 4.53 0.5902 WVFGRD96 37.0 195 85 -60 4.54 0.5986 WVFGRD96 38.0 195 85 -60 4.54 0.6044 WVFGRD96 39.0 190 80 -55 4.55 0.6088 WVFGRD96 40.0 195 85 -65 4.67 0.6073 WVFGRD96 41.0 190 80 -65 4.67 0.6130 WVFGRD96 42.0 190 80 -65 4.68 0.6190 WVFGRD96 43.0 190 80 -65 4.68 0.6247 WVFGRD96 44.0 190 80 -65 4.69 0.6288 WVFGRD96 45.0 190 80 -65 4.70 0.6317 WVFGRD96 46.0 185 75 -65 4.70 0.6335 WVFGRD96 47.0 185 75 -65 4.71 0.6346 WVFGRD96 48.0 185 75 -65 4.72 0.6336 WVFGRD96 49.0 185 75 -65 4.72 0.6324 WVFGRD96 50.0 185 75 -65 4.73 0.6298 WVFGRD96 51.0 185 75 -65 4.73 0.6264 WVFGRD96 52.0 185 75 -65 4.74 0.6218 WVFGRD96 53.0 185 75 -65 4.74 0.6160 WVFGRD96 54.0 185 75 -65 4.74 0.6094 WVFGRD96 55.0 185 75 -65 4.75 0.6016 WVFGRD96 56.0 190 80 -65 4.75 0.5942 WVFGRD96 57.0 185 80 -65 4.76 0.5861 WVFGRD96 58.0 185 80 -65 4.76 0.5790 WVFGRD96 59.0 185 80 -65 4.76 0.5716
The best solution is
WVFGRD96 47.0 185 75 -65 4.71 0.6346
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00