The ANSS event ID is ak018fcr8hkj and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak018fcr8hkj/executive.
2018/11/30 23:07:46 61.533 -149.947 39.7 4.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2018/11/30 23:07:46:0 61.53 -149.95 39.7 4.1 Alaska Stations used: AK.CUT AK.GHO AK.KNK AK.PWL AK.RC01 AK.SAW AK.SCM AK.SKN AK.SSN AT.PMR AV.STLK TA.M22K Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.60e+22 dyne-cm Mw = 4.07 Z = 47 km Plane Strike Dip Rake NP1 185 65 -75 NP2 333 29 -119 Principal Axes: Axis Value Plunge Azimuth T 1.60e+22 19 264 N 0.00e+00 14 359 P -1.60e+22 67 122 Moment Tensor: (dyne-cm) Component Value Mxx -5.63e+20 Mxy 2.67e+21 Mxz 2.61e+21 Myy 1.24e+22 Myz -9.76e+21 Mzz -1.19e+22 --------###### ##########--########## ############-------######### ############-----------####### #############--------------####### ##############---------------####### ##############-----------------####### ###############------------------####### ##############--------------------###### ###############---------------------###### ## ##########---------------------###### ## T ##########--------- ----------##### ## #########---------- P ----------##### ##############--------- ----------#### ##############----------------------#### #############---------------------#### ############---------------------### ###########--------------------### ##########------------------## #########-----------------## #######--------------# ####---------- Global CMT Convention Moment Tensor: R T P -1.19e+22 2.61e+21 9.76e+21 2.61e+21 -5.63e+20 -2.67e+21 9.76e+21 -2.67e+21 1.24e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20181130230746/index.html |
STK = 185 DIP = 65 RAKE = -75 MW = 4.07 HS = 47.0
The NDK file is 20181130230746.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 175 50 75 3.20 0.2064 WVFGRD96 2.0 15 40 95 3.36 0.2814 WVFGRD96 3.0 180 60 75 3.40 0.2429 WVFGRD96 4.0 145 85 -55 3.39 0.2654 WVFGRD96 5.0 145 80 -50 3.41 0.2985 WVFGRD96 6.0 140 75 -50 3.44 0.3228 WVFGRD96 7.0 140 70 -45 3.47 0.3419 WVFGRD96 8.0 145 80 -50 3.52 0.3531 WVFGRD96 9.0 145 80 -50 3.54 0.3681 WVFGRD96 10.0 145 80 -50 3.56 0.3804 WVFGRD96 11.0 145 75 -50 3.58 0.3913 WVFGRD96 12.0 145 75 -50 3.60 0.3999 WVFGRD96 13.0 340 75 50 3.61 0.4096 WVFGRD96 14.0 340 75 50 3.62 0.4170 WVFGRD96 15.0 340 75 50 3.64 0.4219 WVFGRD96 16.0 345 75 50 3.65 0.4250 WVFGRD96 17.0 345 75 50 3.66 0.4266 WVFGRD96 18.0 345 75 50 3.67 0.4262 WVFGRD96 19.0 345 80 55 3.68 0.4250 WVFGRD96 20.0 345 80 55 3.69 0.4257 WVFGRD96 21.0 345 80 55 3.71 0.4274 WVFGRD96 22.0 340 85 55 3.72 0.4275 WVFGRD96 23.0 345 85 55 3.73 0.4276 WVFGRD96 24.0 345 85 60 3.74 0.4277 WVFGRD96 25.0 170 90 -60 3.75 0.4281 WVFGRD96 26.0 170 85 -60 3.76 0.4313 WVFGRD96 27.0 165 80 -60 3.77 0.4349 WVFGRD96 28.0 170 80 -60 3.79 0.4382 WVFGRD96 29.0 200 80 -65 3.83 0.4580 WVFGRD96 30.0 200 80 -65 3.84 0.4748 WVFGRD96 31.0 200 80 -65 3.85 0.4912 WVFGRD96 32.0 195 75 -70 3.86 0.5093 WVFGRD96 33.0 200 75 -65 3.87 0.5260 WVFGRD96 34.0 200 75 -65 3.88 0.5407 WVFGRD96 35.0 200 75 -65 3.88 0.5512 WVFGRD96 36.0 195 70 -65 3.89 0.5649 WVFGRD96 37.0 195 70 -65 3.89 0.5764 WVFGRD96 38.0 195 70 -65 3.90 0.5866 WVFGRD96 39.0 190 65 -65 3.91 0.5948 WVFGRD96 40.0 190 70 -70 4.01 0.6083 WVFGRD96 41.0 190 70 -70 4.02 0.6137 WVFGRD96 42.0 185 65 -75 4.03 0.6222 WVFGRD96 43.0 185 65 -75 4.04 0.6295 WVFGRD96 44.0 185 65 -75 4.05 0.6338 WVFGRD96 45.0 185 65 -75 4.06 0.6399 WVFGRD96 46.0 185 65 -75 4.06 0.6407 WVFGRD96 47.0 185 65 -75 4.07 0.6441 WVFGRD96 48.0 185 65 -75 4.08 0.6430 WVFGRD96 49.0 185 65 -70 4.08 0.6430 WVFGRD96 50.0 185 65 -70 4.09 0.6430 WVFGRD96 51.0 185 65 -70 4.09 0.6401 WVFGRD96 52.0 185 65 -70 4.10 0.6389 WVFGRD96 53.0 185 65 -70 4.10 0.6365 WVFGRD96 54.0 185 65 -70 4.10 0.6329 WVFGRD96 55.0 185 65 -70 4.11 0.6297 WVFGRD96 56.0 185 65 -70 4.11 0.6249 WVFGRD96 57.0 185 65 -70 4.11 0.6209 WVFGRD96 58.0 185 65 -70 4.12 0.6157 WVFGRD96 59.0 185 65 -70 4.12 0.6104
The best solution is
WVFGRD96 47.0 185 65 -75 4.07 0.6441
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00