The ANSS event ID is ak018exsi6u4 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak018exsi6u4/executive.
2018/11/21 18:21:43 59.955 -153.266 143.3 5.6 Alaska
USGS/SLU Moment Tensor Solution ENS 2018/11/21 18:21:43:0 59.96 -153.27 143.3 5.6 Alaska Stations used: AK.BRLK AK.CAPN AK.CNP AK.GHO AK.HOM AK.KNK AK.PPLA AK.PWL AK.RC01 AK.SAW AK.SKN AK.SSN AT.OHAK AT.PMR AT.SVW2 AV.ACH II.KDAK TA.L16K TA.L18K TA.L19K TA.M16K TA.M17K TA.M19K TA.M22K TA.N17K TA.N18K TA.N19K TA.O16K TA.O18K TA.O19K TA.O22K TA.P18K TA.P19K TA.Q19K TA.Q20K TA.R17L Filtering commands used: cut o DIST/3.5 -50 o DIST/3.5 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.24e+24 dyne-cm Mw = 5.50 Z = 144 km Plane Strike Dip Rake NP1 60 65 30 NP2 316 63 152 Principal Axes: Axis Value Plunge Azimuth T 2.24e+24 38 279 N 0.00e+00 52 96 P -2.24e+24 1 188 Moment Tensor: (dyne-cm) Component Value Mxx -2.16e+24 Mxy -5.07e+23 Mxz 2.13e+23 Myy 1.31e+24 Myz -1.07e+24 Mzz 8.57e+23 -------------- ---------------------- ---------------------------- #######----------------------- #############--------------------- #################------------------- ####################----------------## #######################-------------#### ###### ################----------##### ####### T ##################------######## ####### ###################----######### ##############################-########### ############################----########## #########################-------######## #####################------------####### ################----------------###### #########-----------------------#### -------------------------------### -----------------------------# ---------------------------- ------- ------------ --- P -------- Global CMT Convention Moment Tensor: R T P 8.57e+23 2.13e+23 1.07e+24 2.13e+23 -2.16e+24 5.07e+23 1.07e+24 5.07e+23 1.31e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20181121182143/index.html |
STK = 60 DIP = 65 RAKE = 30 MW = 5.50 HS = 144.0
The NDK file is 20181121182143.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2018/11/21 18:21:43:0 59.96 -153.27 143.3 5.6 Alaska Stations used: AK.BRLK AK.CAPN AK.CNP AK.GHO AK.HOM AK.KNK AK.PPLA AK.PWL AK.RC01 AK.SAW AK.SKN AK.SSN AT.OHAK AT.PMR AT.SVW2 AV.ACH II.KDAK TA.L16K TA.L18K TA.L19K TA.M16K TA.M17K TA.M19K TA.M22K TA.N17K TA.N18K TA.N19K TA.O16K TA.O18K TA.O19K TA.O22K TA.P18K TA.P19K TA.Q19K TA.Q20K TA.R17L Filtering commands used: cut o DIST/3.5 -50 o DIST/3.5 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.24e+24 dyne-cm Mw = 5.50 Z = 144 km Plane Strike Dip Rake NP1 60 65 30 NP2 316 63 152 Principal Axes: Axis Value Plunge Azimuth T 2.24e+24 38 279 N 0.00e+00 52 96 P -2.24e+24 1 188 Moment Tensor: (dyne-cm) Component Value Mxx -2.16e+24 Mxy -5.07e+23 Mxz 2.13e+23 Myy 1.31e+24 Myz -1.07e+24 Mzz 8.57e+23 -------------- ---------------------- ---------------------------- #######----------------------- #############--------------------- #################------------------- ####################----------------## #######################-------------#### ###### ################----------##### ####### T ##################------######## ####### ###################----######### ##############################-########### ############################----########## #########################-------######## #####################------------####### ################----------------###### #########-----------------------#### -------------------------------### -----------------------------# ---------------------------- ------- ------------ --- P -------- Global CMT Convention Moment Tensor: R T P 8.57e+23 2.13e+23 1.07e+24 2.13e+23 -2.16e+24 5.07e+23 1.07e+24 5.07e+23 1.31e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20181121182143/index.html |
W-phase Moment Tensor (Mww) Moment 2.388e+17 N-m Magnitude 5.52 Mww Depth 140.5 km Percent DC 98% Half Duration 1.48 s Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 319 63 153 NP2 62 66 30 Principal Axes Axis Value Plunge Azimuth T 2.376e+17 N-m 37 282 N 0.025e+17 N-m 53 98 P -2.400e+17 N-m 2 190 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -50 o DIST/3.5 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 135 65 -35 4.55 0.1778 WVFGRD96 4.0 320 75 10 4.57 0.1982 WVFGRD96 6.0 320 75 15 4.63 0.2124 WVFGRD96 8.0 325 65 20 4.69 0.2210 WVFGRD96 10.0 325 65 20 4.72 0.2210 WVFGRD96 12.0 325 65 25 4.74 0.2216 WVFGRD96 14.0 320 70 20 4.76 0.2222 WVFGRD96 16.0 225 70 -20 4.77 0.2235 WVFGRD96 18.0 225 70 -15 4.79 0.2252 WVFGRD96 20.0 225 70 -15 4.81 0.2249 WVFGRD96 22.0 55 70 25 4.82 0.2239 WVFGRD96 24.0 55 70 25 4.84 0.2228 WVFGRD96 26.0 55 70 20 4.85 0.2206 WVFGRD96 28.0 55 70 20 4.87 0.2170 WVFGRD96 30.0 55 70 20 4.88 0.2122 WVFGRD96 32.0 50 75 15 4.90 0.2069 WVFGRD96 34.0 50 75 10 4.92 0.2014 WVFGRD96 36.0 50 75 10 4.94 0.1960 WVFGRD96 38.0 50 75 5 4.96 0.1898 WVFGRD96 40.0 250 65 40 5.02 0.1911 WVFGRD96 42.0 50 70 5 5.03 0.1867 WVFGRD96 44.0 50 75 -10 5.04 0.1860 WVFGRD96 46.0 50 75 -5 5.06 0.1861 WVFGRD96 48.0 50 75 -10 5.07 0.1865 WVFGRD96 50.0 50 75 -10 5.08 0.1877 WVFGRD96 52.0 50 75 -5 5.10 0.1898 WVFGRD96 54.0 50 75 -5 5.11 0.1924 WVFGRD96 56.0 50 75 -5 5.12 0.1955 WVFGRD96 58.0 50 75 -5 5.14 0.1995 WVFGRD96 60.0 50 75 -5 5.15 0.2039 WVFGRD96 62.0 60 80 15 5.17 0.2094 WVFGRD96 64.0 60 80 15 5.18 0.2184 WVFGRD96 66.0 60 80 20 5.20 0.2309 WVFGRD96 68.0 60 80 20 5.21 0.2462 WVFGRD96 70.0 60 75 20 5.23 0.2627 WVFGRD96 72.0 60 75 20 5.25 0.2797 WVFGRD96 74.0 60 75 20 5.26 0.2967 WVFGRD96 76.0 60 75 25 5.28 0.3144 WVFGRD96 78.0 60 75 25 5.29 0.3324 WVFGRD96 80.0 60 75 25 5.31 0.3495 WVFGRD96 82.0 60 75 25 5.32 0.3687 WVFGRD96 84.0 60 75 30 5.34 0.3925 WVFGRD96 86.0 60 70 30 5.35 0.4170 WVFGRD96 88.0 60 70 30 5.36 0.4435 WVFGRD96 90.0 60 70 30 5.38 0.4697 WVFGRD96 92.0 60 70 30 5.39 0.4948 WVFGRD96 94.0 65 65 35 5.40 0.5219 WVFGRD96 96.0 65 65 35 5.41 0.5460 WVFGRD96 98.0 65 65 35 5.42 0.5654 WVFGRD96 100.0 65 65 35 5.43 0.5802 WVFGRD96 102.0 65 65 35 5.43 0.5912 WVFGRD96 104.0 65 65 35 5.44 0.6015 WVFGRD96 106.0 65 65 35 5.44 0.6105 WVFGRD96 108.0 65 65 35 5.45 0.6193 WVFGRD96 110.0 65 65 35 5.45 0.6266 WVFGRD96 112.0 65 65 35 5.46 0.6339 WVFGRD96 114.0 65 65 35 5.46 0.6402 WVFGRD96 116.0 65 65 35 5.47 0.6456 WVFGRD96 118.0 65 65 35 5.47 0.6506 WVFGRD96 120.0 65 65 35 5.47 0.6546 WVFGRD96 122.0 65 65 35 5.48 0.6595 WVFGRD96 124.0 65 65 35 5.48 0.6634 WVFGRD96 126.0 65 65 35 5.48 0.6667 WVFGRD96 128.0 65 65 35 5.48 0.6697 WVFGRD96 130.0 65 65 35 5.49 0.6721 WVFGRD96 132.0 65 65 35 5.49 0.6742 WVFGRD96 134.0 65 65 35 5.49 0.6756 WVFGRD96 136.0 60 65 30 5.49 0.6765 WVFGRD96 138.0 60 65 30 5.50 0.6776 WVFGRD96 140.0 60 65 30 5.50 0.6782 WVFGRD96 142.0 60 65 30 5.50 0.6785 WVFGRD96 144.0 60 65 30 5.50 0.6792 WVFGRD96 146.0 60 65 30 5.50 0.6789 WVFGRD96 148.0 60 65 30 5.51 0.6784 WVFGRD96 150.0 60 65 30 5.51 0.6777 WVFGRD96 152.0 60 65 30 5.51 0.6765 WVFGRD96 154.0 60 65 30 5.51 0.6748 WVFGRD96 156.0 60 65 30 5.51 0.6733 WVFGRD96 158.0 60 65 30 5.51 0.6717 WVFGRD96 160.0 60 65 30 5.51 0.6698 WVFGRD96 162.0 60 65 30 5.52 0.6676 WVFGRD96 164.0 60 65 30 5.52 0.6649 WVFGRD96 166.0 60 65 30 5.52 0.6625 WVFGRD96 168.0 60 65 30 5.52 0.6604
The best solution is
WVFGRD96 144.0 60 65 30 5.50 0.6792
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -50 o DIST/3.5 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00