Location

Location ANSS

The ANSS event ID is ak018exsi6u4 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak018exsi6u4/executive.

2018/11/21 18:21:43 59.955 -153.266 143.3 5.6 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2018/11/21 18:21:43:0  59.96 -153.27 143.3 5.6 Alaska
 
 Stations used:
   AK.BRLK AK.CAPN AK.CNP AK.GHO AK.HOM AK.KNK AK.PPLA AK.PWL 
   AK.RC01 AK.SAW AK.SKN AK.SSN AT.OHAK AT.PMR AT.SVW2 AV.ACH 
   II.KDAK TA.L16K TA.L18K TA.L19K TA.M16K TA.M17K TA.M19K 
   TA.M22K TA.N17K TA.N18K TA.N19K TA.O16K TA.O18K TA.O19K 
   TA.O22K TA.P18K TA.P19K TA.Q19K TA.Q20K TA.R17L 
 
 Filtering commands used:
   cut o DIST/3.5 -50 o DIST/3.5 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.24e+24 dyne-cm
  Mw = 5.50 
  Z  = 144 km
  Plane   Strike  Dip  Rake
   NP1       60    65    30
   NP2      316    63   152
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.24e+24     38     279
    N   0.00e+00     52      96
    P  -2.24e+24      1     188

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.16e+24
       Mxy    -5.07e+23
       Mxz     2.13e+23
       Myy     1.31e+24
       Myz    -1.07e+24
       Mzz     8.57e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             #######-----------------------          
           #############---------------------        
          #################-------------------       
         ####################----------------##      
        #######################-------------####     
        ######   ################----------#####     
       ####### T ##################------########    
       #######   ###################----#########    
       ##############################-###########    
       ############################----##########    
        #########################-------########     
        #####################------------#######     
         ################----------------######      
          #########-----------------------####       
           -------------------------------###        
             -----------------------------#          
              ----------------------------           
                 -------   ------------              
                     --- P --------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.57e+23   2.13e+23   1.07e+24 
  2.13e+23  -2.16e+24   5.07e+23 
  1.07e+24   5.07e+23   1.31e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20181121182143/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 60
      DIP = 65
     RAKE = 30
       MW = 5.50
       HS = 144.0

The NDK file is 20181121182143.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSW
 USGS/SLU Moment Tensor Solution
 ENS  2018/11/21 18:21:43:0  59.96 -153.27 143.3 5.6 Alaska
 
 Stations used:
   AK.BRLK AK.CAPN AK.CNP AK.GHO AK.HOM AK.KNK AK.PPLA AK.PWL 
   AK.RC01 AK.SAW AK.SKN AK.SSN AT.OHAK AT.PMR AT.SVW2 AV.ACH 
   II.KDAK TA.L16K TA.L18K TA.L19K TA.M16K TA.M17K TA.M19K 
   TA.M22K TA.N17K TA.N18K TA.N19K TA.O16K TA.O18K TA.O19K 
   TA.O22K TA.P18K TA.P19K TA.Q19K TA.Q20K TA.R17L 
 
 Filtering commands used:
   cut o DIST/3.5 -50 o DIST/3.5 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.24e+24 dyne-cm
  Mw = 5.50 
  Z  = 144 km
  Plane   Strike  Dip  Rake
   NP1       60    65    30
   NP2      316    63   152
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.24e+24     38     279
    N   0.00e+00     52      96
    P  -2.24e+24      1     188

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.16e+24
       Mxy    -5.07e+23
       Mxz     2.13e+23
       Myy     1.31e+24
       Myz    -1.07e+24
       Mzz     8.57e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             #######-----------------------          
           #############---------------------        
          #################-------------------       
         ####################----------------##      
        #######################-------------####     
        ######   ################----------#####     
       ####### T ##################------########    
       #######   ###################----#########    
       ##############################-###########    
       ############################----##########    
        #########################-------########     
        #####################------------#######     
         ################----------------######      
          #########-----------------------####       
           -------------------------------###        
             -----------------------------#          
              ----------------------------           
                 -------   ------------              
                     --- P --------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.57e+23   2.13e+23   1.07e+24 
  2.13e+23  -2.16e+24   5.07e+23 
  1.07e+24   5.07e+23   1.31e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20181121182143/index.html
	
W-phase Moment Tensor (Mww)
Moment 2.388e+17 N-m
Magnitude 5.52 Mww
Depth 140.5 km
Percent DC 98%
Half Duration 1.48 s
Catalog US
Data Source US 3
Contributor US 3

Nodal Planes
Plane Strike Dip Rake
NP1 319 63 153
NP2 62 66 30

Principal Axes
Axis Value Plunge Azimuth
T 2.376e+17 N-m 37 282
N 0.025e+17 N-m 53 98
P -2.400e+17 N-m 2 190

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.5 -50 o DIST/3.5 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   135    65   -35   4.55 0.1778
WVFGRD96    4.0   320    75    10   4.57 0.1982
WVFGRD96    6.0   320    75    15   4.63 0.2124
WVFGRD96    8.0   325    65    20   4.69 0.2210
WVFGRD96   10.0   325    65    20   4.72 0.2210
WVFGRD96   12.0   325    65    25   4.74 0.2216
WVFGRD96   14.0   320    70    20   4.76 0.2222
WVFGRD96   16.0   225    70   -20   4.77 0.2235
WVFGRD96   18.0   225    70   -15   4.79 0.2252
WVFGRD96   20.0   225    70   -15   4.81 0.2249
WVFGRD96   22.0    55    70    25   4.82 0.2239
WVFGRD96   24.0    55    70    25   4.84 0.2228
WVFGRD96   26.0    55    70    20   4.85 0.2206
WVFGRD96   28.0    55    70    20   4.87 0.2170
WVFGRD96   30.0    55    70    20   4.88 0.2122
WVFGRD96   32.0    50    75    15   4.90 0.2069
WVFGRD96   34.0    50    75    10   4.92 0.2014
WVFGRD96   36.0    50    75    10   4.94 0.1960
WVFGRD96   38.0    50    75     5   4.96 0.1898
WVFGRD96   40.0   250    65    40   5.02 0.1911
WVFGRD96   42.0    50    70     5   5.03 0.1867
WVFGRD96   44.0    50    75   -10   5.04 0.1860
WVFGRD96   46.0    50    75    -5   5.06 0.1861
WVFGRD96   48.0    50    75   -10   5.07 0.1865
WVFGRD96   50.0    50    75   -10   5.08 0.1877
WVFGRD96   52.0    50    75    -5   5.10 0.1898
WVFGRD96   54.0    50    75    -5   5.11 0.1924
WVFGRD96   56.0    50    75    -5   5.12 0.1955
WVFGRD96   58.0    50    75    -5   5.14 0.1995
WVFGRD96   60.0    50    75    -5   5.15 0.2039
WVFGRD96   62.0    60    80    15   5.17 0.2094
WVFGRD96   64.0    60    80    15   5.18 0.2184
WVFGRD96   66.0    60    80    20   5.20 0.2309
WVFGRD96   68.0    60    80    20   5.21 0.2462
WVFGRD96   70.0    60    75    20   5.23 0.2627
WVFGRD96   72.0    60    75    20   5.25 0.2797
WVFGRD96   74.0    60    75    20   5.26 0.2967
WVFGRD96   76.0    60    75    25   5.28 0.3144
WVFGRD96   78.0    60    75    25   5.29 0.3324
WVFGRD96   80.0    60    75    25   5.31 0.3495
WVFGRD96   82.0    60    75    25   5.32 0.3687
WVFGRD96   84.0    60    75    30   5.34 0.3925
WVFGRD96   86.0    60    70    30   5.35 0.4170
WVFGRD96   88.0    60    70    30   5.36 0.4435
WVFGRD96   90.0    60    70    30   5.38 0.4697
WVFGRD96   92.0    60    70    30   5.39 0.4948
WVFGRD96   94.0    65    65    35   5.40 0.5219
WVFGRD96   96.0    65    65    35   5.41 0.5460
WVFGRD96   98.0    65    65    35   5.42 0.5654
WVFGRD96  100.0    65    65    35   5.43 0.5802
WVFGRD96  102.0    65    65    35   5.43 0.5912
WVFGRD96  104.0    65    65    35   5.44 0.6015
WVFGRD96  106.0    65    65    35   5.44 0.6105
WVFGRD96  108.0    65    65    35   5.45 0.6193
WVFGRD96  110.0    65    65    35   5.45 0.6266
WVFGRD96  112.0    65    65    35   5.46 0.6339
WVFGRD96  114.0    65    65    35   5.46 0.6402
WVFGRD96  116.0    65    65    35   5.47 0.6456
WVFGRD96  118.0    65    65    35   5.47 0.6506
WVFGRD96  120.0    65    65    35   5.47 0.6546
WVFGRD96  122.0    65    65    35   5.48 0.6595
WVFGRD96  124.0    65    65    35   5.48 0.6634
WVFGRD96  126.0    65    65    35   5.48 0.6667
WVFGRD96  128.0    65    65    35   5.48 0.6697
WVFGRD96  130.0    65    65    35   5.49 0.6721
WVFGRD96  132.0    65    65    35   5.49 0.6742
WVFGRD96  134.0    65    65    35   5.49 0.6756
WVFGRD96  136.0    60    65    30   5.49 0.6765
WVFGRD96  138.0    60    65    30   5.50 0.6776
WVFGRD96  140.0    60    65    30   5.50 0.6782
WVFGRD96  142.0    60    65    30   5.50 0.6785
WVFGRD96  144.0    60    65    30   5.50 0.6792
WVFGRD96  146.0    60    65    30   5.50 0.6789
WVFGRD96  148.0    60    65    30   5.51 0.6784
WVFGRD96  150.0    60    65    30   5.51 0.6777
WVFGRD96  152.0    60    65    30   5.51 0.6765
WVFGRD96  154.0    60    65    30   5.51 0.6748
WVFGRD96  156.0    60    65    30   5.51 0.6733
WVFGRD96  158.0    60    65    30   5.51 0.6717
WVFGRD96  160.0    60    65    30   5.51 0.6698
WVFGRD96  162.0    60    65    30   5.52 0.6676
WVFGRD96  164.0    60    65    30   5.52 0.6649
WVFGRD96  166.0    60    65    30   5.52 0.6625
WVFGRD96  168.0    60    65    30   5.52 0.6604

The best solution is

WVFGRD96  144.0    60    65    30   5.50 0.6792

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.5 -50 o DIST/3.5 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 04:11:41 AM CDT 2024