The ANSS event ID is ak0188rwahak and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0188rwahak/executive.
2018/07/10 01:08:21 62.979 -150.636 113.4 5 Alaska
USGS/SLU Moment Tensor Solution ENS 2018/07/10 01:08:21:0 62.98 -150.64 113.4 5.0 Alaska Stations used: AK.BPAW AK.BWN AK.CCB AK.CUT AK.DHY AK.DIV AK.FID AK.FIRE AK.GHO AK.GLI AK.HDA AK.KLU AK.KNK AK.MCK AK.MDM AK.MLY AK.NEA2 AK.PAX AK.PPD AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.SWD AK.WRH AT.PMR AV.SPU IM.IL31 IU.COLA TA.G23K TA.H19K TA.H21K TA.H23K TA.H24K TA.I20K TA.J20K TA.J25K TA.J26L TA.K20K TA.L18K TA.L19K TA.M20K TA.M22K TA.M24K TA.N19K TA.N25K TA.O22K TA.POKR Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.82e+23 dyne-cm Mw = 4.90 Z = 112 km Plane Strike Dip Rake NP1 27 75 103 NP2 165 20 50 Principal Axes: Axis Value Plunge Azimuth T 2.82e+23 58 315 N 0.00e+00 13 203 P -2.82e+23 29 106 Moment Tensor: (dyne-cm) Component Value Mxx 2.17e+22 Mxy 1.90e+22 Mxz 1.22e+23 Myy -1.60e+23 Myz -2.04e+23 Mzz 1.39e+23 ############## --##################-- ---####################----- --######################------ ---#######################-------- ---#######################---------- ---######## #############----------- ----######## T ############------------- ---######### ###########-------------- ----#######################--------------- ----######################---------------- ----#####################----------------- ----####################---------- ----- ----##################----------- P ---- ----#################------------ ---- ----###############------------------- ----############-------------------- -----#########-------------------- ----#######------------------- -----###-------------------- ---##----------------- ######-------- Global CMT Convention Moment Tensor: R T P 1.39e+23 1.22e+23 2.04e+23 1.22e+23 2.17e+22 -1.90e+22 2.04e+23 -1.90e+22 -1.60e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180710010821/index.html |
STK = 165 DIP = 20 RAKE = 50 MW = 4.90 HS = 112.0
The NDK file is 20180710010821.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 55 45 -90 3.95 0.1073 WVFGRD96 4.0 200 70 35 3.97 0.1070 WVFGRD96 6.0 5 75 -40 4.02 0.1190 WVFGRD96 8.0 5 70 -40 4.11 0.1303 WVFGRD96 10.0 15 60 25 4.14 0.1397 WVFGRD96 12.0 200 65 40 4.18 0.1477 WVFGRD96 14.0 200 65 40 4.21 0.1523 WVFGRD96 16.0 200 65 40 4.24 0.1529 WVFGRD96 18.0 195 65 40 4.26 0.1507 WVFGRD96 20.0 195 65 40 4.29 0.1468 WVFGRD96 22.0 195 65 40 4.31 0.1432 WVFGRD96 24.0 195 65 40 4.33 0.1397 WVFGRD96 26.0 285 45 10 4.36 0.1401 WVFGRD96 28.0 285 45 10 4.38 0.1427 WVFGRD96 30.0 285 50 10 4.40 0.1455 WVFGRD96 32.0 285 50 10 4.43 0.1529 WVFGRD96 34.0 285 55 15 4.45 0.1594 WVFGRD96 36.0 275 75 -20 4.47 0.1689 WVFGRD96 38.0 280 80 -15 4.51 0.1755 WVFGRD96 40.0 90 50 -30 4.60 0.1912 WVFGRD96 42.0 85 45 -35 4.63 0.1910 WVFGRD96 44.0 90 50 -30 4.65 0.1922 WVFGRD96 46.0 90 45 -30 4.67 0.1937 WVFGRD96 48.0 95 45 -25 4.69 0.1965 WVFGRD96 50.0 125 40 25 4.71 0.2017 WVFGRD96 52.0 125 40 25 4.73 0.2186 WVFGRD96 54.0 125 40 20 4.75 0.2348 WVFGRD96 56.0 125 40 20 4.76 0.2492 WVFGRD96 58.0 120 35 20 4.77 0.2621 WVFGRD96 60.0 120 35 20 4.78 0.2762 WVFGRD96 62.0 140 30 30 4.79 0.2899 WVFGRD96 64.0 145 30 30 4.80 0.3045 WVFGRD96 66.0 135 25 25 4.82 0.3201 WVFGRD96 68.0 135 25 25 4.83 0.3343 WVFGRD96 70.0 140 20 30 4.84 0.3498 WVFGRD96 72.0 145 20 30 4.84 0.3632 WVFGRD96 74.0 145 20 30 4.85 0.3782 WVFGRD96 76.0 145 20 30 4.86 0.3913 WVFGRD96 78.0 150 20 35 4.86 0.4025 WVFGRD96 80.0 150 20 35 4.87 0.4139 WVFGRD96 82.0 150 20 35 4.87 0.4240 WVFGRD96 84.0 150 20 35 4.87 0.4324 WVFGRD96 86.0 155 20 40 4.87 0.4398 WVFGRD96 88.0 155 20 40 4.88 0.4461 WVFGRD96 90.0 155 20 40 4.88 0.4518 WVFGRD96 92.0 155 20 40 4.88 0.4563 WVFGRD96 94.0 155 20 40 4.89 0.4597 WVFGRD96 96.0 155 20 40 4.89 0.4622 WVFGRD96 98.0 155 20 40 4.89 0.4643 WVFGRD96 100.0 160 20 45 4.89 0.4658 WVFGRD96 102.0 160 20 45 4.89 0.4665 WVFGRD96 104.0 160 20 45 4.89 0.4709 WVFGRD96 106.0 160 20 45 4.89 0.4774 WVFGRD96 108.0 165 20 50 4.89 0.4824 WVFGRD96 110.0 165 20 50 4.89 0.4855 WVFGRD96 112.0 165 20 50 4.90 0.4863 WVFGRD96 114.0 165 20 50 4.90 0.4858 WVFGRD96 116.0 165 20 50 4.90 0.4848 WVFGRD96 118.0 165 20 50 4.90 0.4844 WVFGRD96 120.0 165 20 50 4.90 0.4831 WVFGRD96 122.0 165 20 50 4.90 0.4821 WVFGRD96 124.0 165 20 50 4.90 0.4808 WVFGRD96 126.0 160 25 45 4.90 0.4791 WVFGRD96 128.0 160 25 45 4.90 0.4768 WVFGRD96 130.0 160 25 45 4.90 0.4748 WVFGRD96 132.0 160 25 45 4.90 0.4724 WVFGRD96 134.0 160 25 45 4.90 0.4697 WVFGRD96 136.0 160 25 45 4.91 0.4675 WVFGRD96 138.0 160 25 45 4.91 0.4644 WVFGRD96 140.0 160 25 45 4.91 0.4624 WVFGRD96 142.0 160 25 45 4.91 0.4595 WVFGRD96 144.0 160 25 45 4.91 0.4559 WVFGRD96 146.0 160 25 45 4.91 0.4523 WVFGRD96 148.0 160 25 45 4.91 0.4494
The best solution is
WVFGRD96 112.0 165 20 50 4.90 0.4863
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00