The ANSS event ID is ak0188d4oyaj and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0188d4oyaj/executive.
2018/07/01 08:20:16 63.068 -150.797 117.3 5 Alaska
USGS/SLU Moment Tensor Solution ENS 2018/07/01 08:20:16:0 63.07 -150.80 117.3 5.0 Alaska Stations used: AK.BPAW AK.BWN AK.CAPN AK.CAST AK.CCB AK.CUT AK.DHY AK.DIV AK.FID AK.GHO AK.GLB AK.GLI AK.HDA AK.HIN AK.KLU AK.KNK AK.KTH AK.MCK AK.MLY AK.NEA2 AK.PAX AK.PPLA AK.RC01 AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SSN AK.WRH AT.PMR AT.SVW2 AV.SPU IM.IL31 IU.COLA TA.H21K TA.H24K TA.I20K TA.I23K TA.J18K TA.J19K TA.J20K TA.J25K TA.L18K TA.L19K TA.M19K TA.M22K TA.M24K TA.N19K TA.POKR Filtering commands used: cut o DIST/3.7 -50 o DIST/3.7 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.54e+23 dyne-cm Mw = 4.87 Z = 126 km Plane Strike Dip Rake NP1 193 78 -112 NP2 75 25 -30 Principal Axes: Axis Value Plunge Azimuth T 2.54e+23 29 300 N 0.00e+00 21 197 P -2.54e+23 52 77 Moment Tensor: (dyne-cm) Component Value Mxx 4.43e+22 Mxy -1.05e+23 Mxz 2.73e+22 Myy 5.30e+22 Myz -2.14e+23 Mzz -9.73e+22 ###########--- ##############-------- ################------------ ################-------------- #################----------------- #### ###########------------------ ##### T ##########-------------------- ###### #########---------------------- ##################---------- --------- ##################----------- P ---------# ##################----------- ---------# ##################----------------------## #################-----------------------## ################----------------------## -###############---------------------### -#############--------------------#### --###########------------------##### ---#########----------------###### ----######-------------####### ----------------############ ------################ --############ Global CMT Convention Moment Tensor: R T P -9.73e+22 2.73e+22 2.14e+23 2.73e+22 4.43e+22 1.05e+23 2.14e+23 1.05e+23 5.30e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180701082016/index.html |
STK = 75 DIP = 25 RAKE = -30 MW = 4.87 HS = 126.0
The NDK file is 20180701082016.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.7 -50 o DIST/3.7 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 0 85 5 3.81 0.1612 WVFGRD96 4.0 180 70 5 3.93 0.1852 WVFGRD96 6.0 180 70 10 4.00 0.2003 WVFGRD96 8.0 180 70 10 4.08 0.2149 WVFGRD96 10.0 175 75 -15 4.13 0.2221 WVFGRD96 12.0 175 75 -10 4.17 0.2238 WVFGRD96 14.0 0 80 10 4.20 0.2181 WVFGRD96 16.0 0 80 10 4.23 0.2110 WVFGRD96 18.0 270 85 15 4.25 0.2109 WVFGRD96 20.0 270 90 15 4.27 0.2153 WVFGRD96 22.0 270 70 10 4.30 0.2236 WVFGRD96 24.0 270 85 15 4.32 0.2334 WVFGRD96 26.0 90 85 -15 4.35 0.2466 WVFGRD96 28.0 90 85 -15 4.37 0.2600 WVFGRD96 30.0 90 80 -15 4.39 0.2723 WVFGRD96 32.0 90 85 -15 4.41 0.2834 WVFGRD96 34.0 90 80 -15 4.43 0.2935 WVFGRD96 36.0 90 80 -15 4.45 0.2997 WVFGRD96 38.0 90 80 -10 4.48 0.3026 WVFGRD96 40.0 90 80 -15 4.53 0.3038 WVFGRD96 42.0 90 75 -10 4.56 0.3021 WVFGRD96 44.0 85 70 -15 4.58 0.3031 WVFGRD96 46.0 85 70 -15 4.60 0.3059 WVFGRD96 48.0 85 70 -15 4.61 0.3091 WVFGRD96 50.0 85 70 -15 4.63 0.3141 WVFGRD96 52.0 85 65 -15 4.65 0.3202 WVFGRD96 54.0 95 60 15 4.68 0.3288 WVFGRD96 56.0 95 60 15 4.69 0.3363 WVFGRD96 58.0 95 60 10 4.70 0.3461 WVFGRD96 60.0 90 60 10 4.70 0.3540 WVFGRD96 62.0 90 60 5 4.70 0.3619 WVFGRD96 64.0 90 60 5 4.71 0.3691 WVFGRD96 66.0 90 60 5 4.72 0.3774 WVFGRD96 68.0 85 60 -10 4.72 0.3838 WVFGRD96 70.0 85 30 -15 4.76 0.3965 WVFGRD96 72.0 85 30 -15 4.77 0.4111 WVFGRD96 74.0 85 30 -15 4.77 0.4246 WVFGRD96 76.0 85 30 -15 4.78 0.4371 WVFGRD96 78.0 85 30 -15 4.79 0.4515 WVFGRD96 80.0 80 30 -20 4.79 0.4637 WVFGRD96 82.0 75 20 -25 4.81 0.4766 WVFGRD96 84.0 80 20 -20 4.81 0.4910 WVFGRD96 86.0 75 20 -25 4.82 0.5054 WVFGRD96 88.0 75 20 -25 4.82 0.5174 WVFGRD96 90.0 75 20 -25 4.83 0.5282 WVFGRD96 92.0 75 20 -25 4.83 0.5369 WVFGRD96 94.0 80 20 -25 4.84 0.5459 WVFGRD96 96.0 80 20 -25 4.84 0.5542 WVFGRD96 98.0 80 20 -25 4.85 0.5608 WVFGRD96 100.0 75 20 -30 4.85 0.5666 WVFGRD96 102.0 75 20 -30 4.85 0.5719 WVFGRD96 104.0 75 20 -30 4.85 0.5768 WVFGRD96 106.0 75 20 -30 4.86 0.5795 WVFGRD96 108.0 75 20 -30 4.86 0.5827 WVFGRD96 110.0 75 20 -30 4.86 0.5854 WVFGRD96 112.0 75 25 -30 4.86 0.5884 WVFGRD96 114.0 75 25 -30 4.86 0.5916 WVFGRD96 116.0 75 25 -30 4.86 0.5955 WVFGRD96 118.0 75 25 -30 4.86 0.5965 WVFGRD96 120.0 75 25 -30 4.86 0.5998 WVFGRD96 122.0 75 25 -30 4.87 0.6001 WVFGRD96 124.0 75 25 -30 4.87 0.6011 WVFGRD96 126.0 75 25 -30 4.87 0.6024 WVFGRD96 128.0 75 25 -30 4.87 0.6003 WVFGRD96 130.0 75 25 -30 4.87 0.6010 WVFGRD96 132.0 75 25 -30 4.87 0.5988 WVFGRD96 134.0 75 25 -30 4.87 0.5994 WVFGRD96 136.0 75 25 -30 4.87 0.5968 WVFGRD96 138.0 75 25 -30 4.87 0.5961 WVFGRD96 140.0 75 25 -30 4.88 0.5941 WVFGRD96 142.0 75 25 -35 4.88 0.5912 WVFGRD96 144.0 75 25 -35 4.88 0.5903 WVFGRD96 146.0 75 25 -35 4.88 0.5867 WVFGRD96 148.0 85 25 -25 4.89 0.5847
The best solution is
WVFGRD96 126.0 75 25 -30 4.87 0.6024
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.7 -50 o DIST/3.7 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00