The ANSS event ID is ak0187uygjsf and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0187uygjsf/executive.
2018/06/20 09:34:08 63.305 -148.123 71.9 3.7 Alaska
USGS/SLU Moment Tensor Solution ENS 2018/06/20 09:34:08:0 63.31 -148.12 71.9 3.7 Alaska Stations used: AK.BPAW AK.CAST AK.CUT AK.HDA AK.KLU AK.KNK AK.KTH AK.MCK AK.NEA2 AK.PAX AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.WRH IM.IL31 IU.COLA TA.J25K TA.J26L TA.M22K TA.M24K TA.N25K Filtering commands used: cut o DIST/3.3 -50 o DIST/3.3 +30 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.02e+22 dyne-cm Mw = 3.94 Z = 108 km Plane Strike Dip Rake NP1 150 75 25 NP2 53 66 164 Principal Axes: Axis Value Plunge Azimuth T 1.02e+22 28 13 N 0.00e+00 61 179 P -1.02e+22 6 280 Moment Tensor: (dyne-cm) Component Value Mxx 7.22e+21 Mxy 3.54e+21 Mxz 3.95e+21 Myy -9.38e+21 Myz 2.04e+21 Mzz 2.16e+21 ############## -##################### ----############ ######### -----############ T ########## --------########### ############ ---------#########################-- -----------#######################---- -------------#####################------ -----------####################------- P ------------##################--------- -------------###############----------- -----------------############------------- ------------------#########--------------- ------------------######---------------- --------------------#------------------- -----------------###------------------ -------------#######---------------- ------###############------------- ####################---------- #####################------- #####################- ############## Global CMT Convention Moment Tensor: R T P 2.16e+21 3.95e+21 -2.04e+21 3.95e+21 7.22e+21 -3.54e+21 -2.04e+21 -3.54e+21 -9.38e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180620093408/index.html |
STK = 150 DIP = 75 RAKE = 25 MW = 3.94 HS = 108.0
The NDK file is 20180620093408.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2018/06/20 09:34:08:0 63.31 -148.12 71.9 3.7 Alaska Stations used: AK.BPAW AK.CAST AK.CUT AK.HDA AK.KLU AK.KNK AK.KTH AK.MCK AK.NEA2 AK.PAX AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.WRH IM.IL31 IU.COLA TA.J25K TA.J26L TA.M22K TA.M24K TA.N25K Filtering commands used: cut o DIST/3.3 -50 o DIST/3.3 +30 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.02e+22 dyne-cm Mw = 3.94 Z = 108 km Plane Strike Dip Rake NP1 150 75 25 NP2 53 66 164 Principal Axes: Axis Value Plunge Azimuth T 1.02e+22 28 13 N 0.00e+00 61 179 P -1.02e+22 6 280 Moment Tensor: (dyne-cm) Component Value Mxx 7.22e+21 Mxy 3.54e+21 Mxz 3.95e+21 Myy -9.38e+21 Myz 2.04e+21 Mzz 2.16e+21 ############## -##################### ----############ ######### -----############ T ########## --------########### ############ ---------#########################-- -----------#######################---- -------------#####################------ -----------####################------- P ------------##################--------- -------------###############----------- -----------------############------------- ------------------#########--------------- ------------------######---------------- --------------------#------------------- -----------------###------------------ -------------#######---------------- ------###############------------- ####################---------- #####################------- #####################- ############## Global CMT Convention Moment Tensor: R T P 2.16e+21 3.95e+21 -2.04e+21 3.95e+21 7.22e+21 -3.54e+21 -2.04e+21 -3.54e+21 -9.38e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180620093408/index.html |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -50 o DIST/3.3 +30 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 240 85 0 2.95 0.1370 WVFGRD96 4.0 240 65 10 3.07 0.1603 WVFGRD96 6.0 240 70 10 3.12 0.1727 WVFGRD96 8.0 240 70 10 3.20 0.1797 WVFGRD96 10.0 240 70 5 3.24 0.1824 WVFGRD96 12.0 240 70 5 3.27 0.1799 WVFGRD96 14.0 140 85 -25 3.31 0.1886 WVFGRD96 16.0 325 85 25 3.35 0.1998 WVFGRD96 18.0 140 90 -25 3.38 0.2069 WVFGRD96 20.0 325 80 20 3.42 0.2133 WVFGRD96 22.0 325 80 20 3.45 0.2187 WVFGRD96 24.0 330 80 15 3.47 0.2234 WVFGRD96 26.0 330 75 15 3.49 0.2262 WVFGRD96 28.0 330 75 20 3.51 0.2270 WVFGRD96 30.0 330 75 15 3.53 0.2319 WVFGRD96 32.0 330 75 15 3.55 0.2364 WVFGRD96 34.0 330 75 15 3.58 0.2416 WVFGRD96 36.0 330 75 10 3.60 0.2475 WVFGRD96 38.0 330 75 10 3.64 0.2581 WVFGRD96 40.0 330 75 10 3.70 0.2773 WVFGRD96 42.0 330 75 5 3.73 0.2862 WVFGRD96 44.0 330 75 10 3.76 0.2909 WVFGRD96 46.0 330 80 5 3.78 0.2960 WVFGRD96 48.0 330 80 0 3.80 0.3019 WVFGRD96 50.0 330 80 0 3.82 0.3093 WVFGRD96 52.0 330 80 -5 3.84 0.3196 WVFGRD96 54.0 330 80 -5 3.85 0.3300 WVFGRD96 56.0 330 80 -5 3.86 0.3423 WVFGRD96 58.0 330 80 -5 3.87 0.3545 WVFGRD96 60.0 150 90 10 3.87 0.3645 WVFGRD96 62.0 330 85 -10 3.89 0.3757 WVFGRD96 64.0 150 90 15 3.89 0.3858 WVFGRD96 66.0 330 90 -10 3.89 0.3953 WVFGRD96 68.0 150 90 15 3.90 0.4029 WVFGRD96 70.0 150 85 15 3.90 0.4098 WVFGRD96 72.0 330 90 -15 3.90 0.4169 WVFGRD96 74.0 150 85 15 3.90 0.4230 WVFGRD96 76.0 150 85 20 3.91 0.4287 WVFGRD96 78.0 150 80 20 3.91 0.4338 WVFGRD96 80.0 150 80 20 3.91 0.4374 WVFGRD96 82.0 150 80 20 3.91 0.4418 WVFGRD96 84.0 150 80 25 3.92 0.4442 WVFGRD96 86.0 150 80 25 3.92 0.4471 WVFGRD96 88.0 150 80 25 3.92 0.4498 WVFGRD96 90.0 150 80 25 3.93 0.4508 WVFGRD96 92.0 150 80 25 3.93 0.4535 WVFGRD96 94.0 150 80 25 3.93 0.4555 WVFGRD96 96.0 150 75 25 3.93 0.4561 WVFGRD96 98.0 150 75 25 3.93 0.4573 WVFGRD96 100.0 150 75 25 3.94 0.4592 WVFGRD96 102.0 150 75 25 3.94 0.4593 WVFGRD96 104.0 150 75 25 3.94 0.4598 WVFGRD96 106.0 150 75 25 3.94 0.4600 WVFGRD96 108.0 150 75 25 3.94 0.4607 WVFGRD96 110.0 150 75 25 3.94 0.4605 WVFGRD96 112.0 150 75 25 3.95 0.4596 WVFGRD96 114.0 150 75 25 3.95 0.4586 WVFGRD96 116.0 150 75 25 3.95 0.4581 WVFGRD96 118.0 150 75 25 3.95 0.4575 WVFGRD96 120.0 150 75 25 3.95 0.4567 WVFGRD96 122.0 150 75 25 3.95 0.4559 WVFGRD96 124.0 150 75 25 3.96 0.4550 WVFGRD96 126.0 150 75 25 3.96 0.4504 WVFGRD96 128.0 150 75 25 3.95 0.4413 WVFGRD96 130.0 150 80 25 3.95 0.4306 WVFGRD96 132.0 150 80 25 3.95 0.4209 WVFGRD96 134.0 150 80 30 3.95 0.4159 WVFGRD96 136.0 150 80 30 3.96 0.4144 WVFGRD96 138.0 150 80 30 3.96 0.4130 WVFGRD96 140.0 150 80 30 3.96 0.4115 WVFGRD96 142.0 150 80 30 3.96 0.4105 WVFGRD96 144.0 150 80 30 3.96 0.4095 WVFGRD96 146.0 150 80 30 3.96 0.4081 WVFGRD96 148.0 150 80 25 3.96 0.4050
The best solution is
WVFGRD96 108.0 150 75 25 3.94 0.4607
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -50 o DIST/3.3 +30 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00