The ANSS event ID is ak018694j0sh and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak018694j0sh/executive.
2018/05/16 12:49:55 66.349 -157.520 7.2 3.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2018/05/16 12:49:55:0 66.35 -157.52 7.2 3.5 Alaska Stations used: AK.BPAW AK.CAST AK.KTH AK.MLY AK.NEA2 AK.RDOG TA.C18K TA.C19K TA.D19K TA.D22K TA.E18K TA.E19K TA.F15K TA.F17K TA.F21K TA.F24K TA.G16K TA.G18K TA.G21K TA.G23K TA.H18K TA.H19K TA.H21K TA.H23K TA.I20K TA.I23K TA.J16K TA.J17K TA.J18K TA.J19K TA.J20K TA.K17K TA.K20K TA.TOLK Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 6.76e+21 dyne-cm Mw = 3.82 Z = 3 km Plane Strike Dip Rake NP1 258 69 -148 NP2 155 60 -25 Principal Axes: Axis Value Plunge Azimuth T 6.76e+21 5 25 N 0.00e+00 52 288 P -6.76e+21 38 119 Moment Tensor: (dyne-cm) Component Value Mxx 4.51e+21 Mxy 4.36e+21 Mxz 2.17e+21 Myy -2.03e+21 Myz -2.59e+21 Mzz -2.47e+21 ############## --################ T # ----################# #### -----######################### -------########################### --------############################ ---------############################# ----------############################## ----------######------------------------ -----------#------------------------------ -------#####------------------------------ ----#########----------------------------- --############---------------------------- ##############---------------- ------- ###############--------------- P ------- ###############-------------- ------ ###############--------------------- ################------------------ ################-------------- #################----------- #################----- ############## Global CMT Convention Moment Tensor: R T P -2.47e+21 2.17e+21 2.59e+21 2.17e+21 4.51e+21 -4.36e+21 2.59e+21 -4.36e+21 -2.03e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180516124955/index.html |
STK = 155 DIP = 60 RAKE = -25 MW = 3.82 HS = 3.0
The NDK file is 20180516124955.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2018/05/16 12:49:55:0 66.35 -157.52 7.2 3.5 Alaska Stations used: AK.BPAW AK.CAST AK.KTH AK.MLY AK.NEA2 AK.RDOG TA.C18K TA.C19K TA.D19K TA.D22K TA.E18K TA.E19K TA.F15K TA.F17K TA.F21K TA.F24K TA.G16K TA.G18K TA.G21K TA.G23K TA.H18K TA.H19K TA.H21K TA.H23K TA.I20K TA.I23K TA.J16K TA.J17K TA.J18K TA.J19K TA.J20K TA.K17K TA.K20K TA.TOLK Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 6.76e+21 dyne-cm Mw = 3.82 Z = 3 km Plane Strike Dip Rake NP1 258 69 -148 NP2 155 60 -25 Principal Axes: Axis Value Plunge Azimuth T 6.76e+21 5 25 N 0.00e+00 52 288 P -6.76e+21 38 119 Moment Tensor: (dyne-cm) Component Value Mxx 4.51e+21 Mxy 4.36e+21 Mxz 2.17e+21 Myy -2.03e+21 Myz -2.59e+21 Mzz -2.47e+21 ############## --################ T # ----################# #### -----######################### -------########################### --------############################ ---------############################# ----------############################## ----------######------------------------ -----------#------------------------------ -------#####------------------------------ ----#########----------------------------- --############---------------------------- ##############---------------- ------- ###############--------------- P ------- ###############-------------- ------ ###############--------------------- ################------------------ ################-------------- #################----------- #################----- ############## Global CMT Convention Moment Tensor: R T P -2.47e+21 2.17e+21 2.59e+21 2.17e+21 4.51e+21 -4.36e+21 2.59e+21 -4.36e+21 -2.03e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180516124955/index.html |
egional Moment Tensor (Mwr) Moment 7.111e+14 N-m Magnitude 3.8 Mwr Depth 3.0 km Percent DC 94 % Half Duration – Catalog US Data Source US2 Contributor US2 Nodal Planes Plane Strike Dip Rake NP1 153 61 -31 NP2 260 63 -148 Principal Axes Axis Value Plunge Azimuth T 7.002e+14 N-m 1 26 N 0.214e+14 N-m 49 295 P -7.216e+14 N-m 41 117 |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 160 55 -5 3.77 0.5572 WVFGRD96 2.0 155 60 -25 3.80 0.5832 WVFGRD96 3.0 155 60 -25 3.82 0.5907 WVFGRD96 4.0 155 65 -25 3.82 0.5781 WVFGRD96 5.0 160 65 -15 3.81 0.5601 WVFGRD96 6.0 160 65 -10 3.81 0.5485 WVFGRD96 7.0 165 65 20 3.81 0.5442 WVFGRD96 8.0 165 65 20 3.82 0.5491 WVFGRD96 9.0 160 70 15 3.82 0.5523 WVFGRD96 10.0 165 65 20 3.84 0.5558 WVFGRD96 11.0 165 65 20 3.85 0.5559 WVFGRD96 12.0 165 65 20 3.85 0.5539 WVFGRD96 13.0 165 65 20 3.86 0.5513 WVFGRD96 14.0 160 70 15 3.86 0.5478 WVFGRD96 15.0 160 70 15 3.87 0.5440 WVFGRD96 16.0 345 75 25 3.89 0.5432 WVFGRD96 17.0 345 75 20 3.89 0.5406 WVFGRD96 18.0 345 75 20 3.90 0.5376 WVFGRD96 19.0 345 75 20 3.91 0.5342 WVFGRD96 20.0 345 75 25 3.92 0.5305 WVFGRD96 21.0 155 75 -25 3.92 0.5231 WVFGRD96 22.0 155 75 -25 3.93 0.5184 WVFGRD96 23.0 155 75 -25 3.93 0.5129 WVFGRD96 24.0 160 80 -20 3.94 0.5068 WVFGRD96 25.0 160 80 -20 3.95 0.5000 WVFGRD96 26.0 160 80 -20 3.96 0.4927 WVFGRD96 27.0 160 80 -20 3.96 0.4851 WVFGRD96 28.0 160 80 -20 3.97 0.4770 WVFGRD96 29.0 160 80 -20 3.97 0.4687
The best solution is
WVFGRD96 3.0 155 60 -25 3.82 0.5907
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00