The ANSS event ID is us1000e5sv and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us1000e5sv/executive.
2018/05/15 20:31:53 61.166 -140.538 5.8 3.9 Yukon
USGS/SLU Moment Tensor Solution ENS 2018/05/15 20:31:53:0 61.17 -140.54 5.8 3.9 Yukon Stations used: AK.BARN AK.BCP AK.BESE AK.BMR AK.CTG AK.DIV AK.EYAK AK.FID AK.GLB AK.GLI AK.HIN AK.HMT AK.ISLE AK.KLU AK.KNK AK.LOGN AK.MCAR AK.MESA AK.RAG AK.SAW AK.SCM AK.SCRK AK.VRDI AK.WAX CN.DAWY CN.HYT CN.WHY NY.MAYO TA.J26L TA.J29N TA.J30M TA.K29M TA.L27K TA.L29M TA.M26K TA.M27K TA.M29M TA.M30M TA.M31M TA.N25K TA.N30M TA.N31M TA.N32M TA.O30N TA.P29M TA.P32M TA.P33M TA.S31K US.EGAK Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.02e+22 dyne-cm Mw = 3.94 Z = 10 km Plane Strike Dip Rake NP1 344 76 -164 NP2 250 75 -15 Principal Axes: Axis Value Plunge Azimuth T 1.02e+22 0 117 N 0.00e+00 69 26 P -1.02e+22 21 207 Moment Tensor: (dyne-cm) Component Value Mxx -4.97e+21 Mxy -7.74e+21 Mxz 3.03e+21 Myy 6.29e+21 Myz 1.62e+21 Mzz -1.32e+21 ##------------ #######--------------- ###########----------------- #############----------------- ################------------------ ##################------------------ ####################------------------ ######################-------########### ######################################## ##################------################## #############------------################# ##########---------------################# #######-------------------################ ###----------------------############### #------------------------############ -------------------------########### T ------------------------########### -------- ------------########### ------ P ------------######### ----- ------------######## -----------------##### -------------# Global CMT Convention Moment Tensor: R T P -1.32e+21 3.03e+21 -1.62e+21 3.03e+21 -4.97e+21 7.74e+21 -1.62e+21 7.74e+21 6.29e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180515203153/index.html |
STK = 250 DIP = 75 RAKE = -15 MW = 3.94 HS = 10.0
The NDK file is 20180515203153.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2018/05/15 20:31:53:0 61.17 -140.54 5.8 3.9 Yukon Stations used: AK.BARN AK.BCP AK.BESE AK.BMR AK.CTG AK.DIV AK.EYAK AK.FID AK.GLB AK.GLI AK.HIN AK.HMT AK.ISLE AK.KLU AK.KNK AK.LOGN AK.MCAR AK.MESA AK.RAG AK.SAW AK.SCM AK.SCRK AK.VRDI AK.WAX CN.DAWY CN.HYT CN.WHY NY.MAYO TA.J26L TA.J29N TA.J30M TA.K29M TA.L27K TA.L29M TA.M26K TA.M27K TA.M29M TA.M30M TA.M31M TA.N25K TA.N30M TA.N31M TA.N32M TA.O30N TA.P29M TA.P32M TA.P33M TA.S31K US.EGAK Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.02e+22 dyne-cm Mw = 3.94 Z = 10 km Plane Strike Dip Rake NP1 344 76 -164 NP2 250 75 -15 Principal Axes: Axis Value Plunge Azimuth T 1.02e+22 0 117 N 0.00e+00 69 26 P -1.02e+22 21 207 Moment Tensor: (dyne-cm) Component Value Mxx -4.97e+21 Mxy -7.74e+21 Mxz 3.03e+21 Myy 6.29e+21 Myz 1.62e+21 Mzz -1.32e+21 ##------------ #######--------------- ###########----------------- #############----------------- ################------------------ ##################------------------ ####################------------------ ######################-------########### ######################################## ##################------################## #############------------################# ##########---------------################# #######-------------------################ ###----------------------############### #------------------------############ -------------------------########### T ------------------------########### -------- ------------########### ------ P ------------######### ----- ------------######## -----------------##### -------------# Global CMT Convention Moment Tensor: R T P -1.32e+21 3.03e+21 -1.62e+21 3.03e+21 -4.97e+21 7.74e+21 -1.62e+21 7.74e+21 6.29e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180515203153/index.html |
Regional Moment Tensor (Mwr) Moment 8.655e+14 N-m Magnitude 3.9 Mwr Depth 14.0 km Percent DC 85 % Half Duration – Catalog US Data Source US2 Contributor US2 Nodal Planes Plane Strike Dip Rake NP1 346 75 -167 NP2 252 78 -15 Principal Axes Axis Value Plunge Azimuth T 8.292e+14 N-m 2 299 N 0.685e+14 N-m 70 34 P -8.978e+14 N-m 20 209 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 255 70 0 3.80 0.5813 WVFGRD96 2.0 255 70 0 3.83 0.6120 WVFGRD96 3.0 250 70 -20 3.86 0.6296 WVFGRD96 4.0 250 70 -20 3.88 0.6446 WVFGRD96 5.0 250 75 -20 3.89 0.6570 WVFGRD96 6.0 250 75 -20 3.90 0.6663 WVFGRD96 7.0 250 75 -15 3.90 0.6722 WVFGRD96 8.0 250 75 -15 3.91 0.6761 WVFGRD96 9.0 250 75 -15 3.93 0.6780 WVFGRD96 10.0 250 75 -15 3.94 0.6791 WVFGRD96 11.0 250 75 -15 3.95 0.6770 WVFGRD96 12.0 250 75 -15 3.96 0.6726 WVFGRD96 13.0 250 75 -15 3.97 0.6658 WVFGRD96 14.0 250 75 -15 3.98 0.6570 WVFGRD96 15.0 250 75 -15 3.99 0.6476 WVFGRD96 16.0 250 75 -15 4.00 0.6380 WVFGRD96 17.0 255 80 -10 4.01 0.6285 WVFGRD96 18.0 255 80 -10 4.02 0.6179 WVFGRD96 19.0 255 80 -10 4.02 0.6066 WVFGRD96 20.0 250 75 -15 4.04 0.5968 WVFGRD96 21.0 250 75 -15 4.04 0.5867 WVFGRD96 22.0 250 75 -15 4.05 0.5773 WVFGRD96 23.0 250 75 -15 4.06 0.5674 WVFGRD96 24.0 255 75 -5 4.06 0.5587 WVFGRD96 25.0 255 75 -5 4.06 0.5500 WVFGRD96 26.0 255 75 -5 4.07 0.5413 WVFGRD96 27.0 255 75 -10 4.08 0.5340 WVFGRD96 28.0 255 75 -5 4.08 0.5269 WVFGRD96 29.0 255 75 -5 4.08 0.5188
The best solution is
WVFGRD96 10.0 250 75 -15 3.94 0.6791
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00