The ANSS event ID is ak01834kwkl7 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak01834kwkl7/executive.
2018/03/09 07:32:37 59.751 -153.126 100.2 4.9 Alaska
USGS/SLU Moment Tensor Solution
ENS 2018/03/09 07:32:37:0 59.75 -153.13 100.2 4.9 Alaska
Stations used:
AK.BRLK AK.CAPN AK.CNP AK.FIRE AK.GHO AK.HOM AK.RC01 AK.SCM
AK.SKN AK.SSN AK.SWD AT.PMR AT.SVW2 AV.ILSW II.KDAK TA.L19K
TA.M19K TA.M20K TA.M22K TA.N17K TA.N18K TA.N19K TA.O16K
TA.O18K TA.O19K TA.P18K TA.P19K TA.Q19K TA.Q20K
Filtering commands used:
cut o DIST/3.4 -20 o DIST/3.4 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 3.13e+23 dyne-cm
Mw = 4.93
Z = 112 km
Plane Strike Dip Rake
NP1 299 64 146
NP2 45 60 30
Principal Axes:
Axis Value Plunge Azimuth
T 3.13e+23 41 260
N 0.00e+00 49 86
P -3.13e+23 3 353
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.02e+23
Mxy 6.77e+22
Mxz -4.05e+22
Myy 1.67e+23
Myz -1.51e+23
Mzz 1.35e+23
--- P --------
------- ------------
----------------------------
------------------------------
--------------------------------##
#########-----------------------####
#################----------------#####
######################-----------#######
#########################--------#######
#############################----#########
##########################################
######## ###################---#########
######## T ##################------#######
####### ################---------#####
########################-------------###
#####################----------------#
##################------------------
#############---------------------
#######-----------------------
----------------------------
----------------------
--------------
Global CMT Convention Moment Tensor:
R T P
1.35e+23 -4.05e+22 1.51e+23
-4.05e+22 -3.02e+23 -6.77e+22
1.51e+23 -6.77e+22 1.67e+23
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180309073237/index.html
|
STK = 45
DIP = 60
RAKE = 30
MW = 4.93
HS = 112.0
The NDK file is 20180309073237.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2018/03/09 07:32:37:0 59.75 -153.13 100.2 4.9 Alaska
Stations used:
AK.BRLK AK.CAPN AK.CNP AK.FIRE AK.GHO AK.HOM AK.RC01 AK.SCM
AK.SKN AK.SSN AK.SWD AT.PMR AT.SVW2 AV.ILSW II.KDAK TA.L19K
TA.M19K TA.M20K TA.M22K TA.N17K TA.N18K TA.N19K TA.O16K
TA.O18K TA.O19K TA.P18K TA.P19K TA.Q19K TA.Q20K
Filtering commands used:
cut o DIST/3.4 -20 o DIST/3.4 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 3.13e+23 dyne-cm
Mw = 4.93
Z = 112 km
Plane Strike Dip Rake
NP1 299 64 146
NP2 45 60 30
Principal Axes:
Axis Value Plunge Azimuth
T 3.13e+23 41 260
N 0.00e+00 49 86
P -3.13e+23 3 353
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.02e+23
Mxy 6.77e+22
Mxz -4.05e+22
Myy 1.67e+23
Myz -1.51e+23
Mzz 1.35e+23
--- P --------
------- ------------
----------------------------
------------------------------
--------------------------------##
#########-----------------------####
#################----------------#####
######################-----------#######
#########################--------#######
#############################----#########
##########################################
######## ###################---#########
######## T ##################------#######
####### ################---------#####
########################-------------###
#####################----------------#
##################------------------
#############---------------------
#######-----------------------
----------------------------
----------------------
--------------
Global CMT Convention Moment Tensor:
R T P
1.35e+23 -4.05e+22 1.51e+23
-4.05e+22 -3.02e+23 -6.77e+22
1.51e+23 -6.77e+22 1.67e+23
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180309073237/index.html
|
Regional Moment Tensor (Mwr) Moment 3.212e+16 N-m Magnitude 4.9 Mwr Depth 102.0 km Percent DC 75 % Half Duration – Catalog US Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 299 57 148 NP2 48 63 37 Principal Axes Axis Value Plunge Azimuth T 3.402e+16 N-m 44 266 N -0.421e+16 N-m 45 79 P -2.981e+16 N-m 4 172 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -20 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 2.0 70 45 -80 3.93 0.1302
WVFGRD96 4.0 285 60 -25 3.95 0.1473
WVFGRD96 6.0 280 65 -25 4.01 0.1671
WVFGRD96 8.0 280 65 -25 4.10 0.1829
WVFGRD96 10.0 280 65 -25 4.15 0.1906
WVFGRD96 12.0 285 70 -25 4.19 0.1973
WVFGRD96 14.0 285 70 -25 4.22 0.1980
WVFGRD96 16.0 285 70 -30 4.25 0.1946
WVFGRD96 18.0 30 60 25 4.27 0.1888
WVFGRD96 20.0 30 65 25 4.30 0.1945
WVFGRD96 22.0 30 65 20 4.33 0.1989
WVFGRD96 24.0 215 75 25 4.35 0.2056
WVFGRD96 26.0 215 75 25 4.37 0.2130
WVFGRD96 28.0 215 75 20 4.39 0.2217
WVFGRD96 30.0 215 75 20 4.41 0.2303
WVFGRD96 32.0 215 75 20 4.43 0.2354
WVFGRD96 34.0 215 75 20 4.44 0.2379
WVFGRD96 36.0 215 70 15 4.46 0.2369
WVFGRD96 38.0 35 80 5 4.50 0.2438
WVFGRD96 40.0 35 75 10 4.56 0.2579
WVFGRD96 42.0 30 65 5 4.59 0.2682
WVFGRD96 44.0 30 65 0 4.62 0.2798
WVFGRD96 46.0 30 65 10 4.64 0.2971
WVFGRD96 48.0 35 60 10 4.68 0.3158
WVFGRD96 50.0 35 60 10 4.70 0.3324
WVFGRD96 52.0 35 60 10 4.71 0.3468
WVFGRD96 54.0 35 55 5 4.74 0.3607
WVFGRD96 56.0 35 55 5 4.75 0.3712
WVFGRD96 58.0 35 55 5 4.77 0.3843
WVFGRD96 60.0 35 55 5 4.78 0.3975
WVFGRD96 62.0 40 55 10 4.80 0.4108
WVFGRD96 64.0 40 55 10 4.81 0.4257
WVFGRD96 66.0 40 55 10 4.82 0.4383
WVFGRD96 68.0 40 55 10 4.83 0.4511
WVFGRD96 70.0 40 55 15 4.83 0.4632
WVFGRD96 72.0 45 55 25 4.84 0.4773
WVFGRD96 74.0 45 55 25 4.85 0.4919
WVFGRD96 76.0 45 55 25 4.86 0.5055
WVFGRD96 78.0 45 55 25 4.86 0.5179
WVFGRD96 80.0 45 55 25 4.87 0.5311
WVFGRD96 82.0 45 60 25 4.88 0.5431
WVFGRD96 84.0 45 60 25 4.88 0.5539
WVFGRD96 86.0 45 60 25 4.89 0.5651
WVFGRD96 88.0 45 60 25 4.89 0.5734
WVFGRD96 90.0 45 60 25 4.90 0.5817
WVFGRD96 92.0 45 60 25 4.90 0.5893
WVFGRD96 94.0 45 60 30 4.90 0.5952
WVFGRD96 96.0 45 60 30 4.90 0.6019
WVFGRD96 98.0 45 60 30 4.91 0.6081
WVFGRD96 100.0 45 60 30 4.91 0.6125
WVFGRD96 102.0 45 60 30 4.91 0.6149
WVFGRD96 104.0 45 60 30 4.92 0.6180
WVFGRD96 106.0 45 60 30 4.92 0.6203
WVFGRD96 108.0 45 60 30 4.92 0.6216
WVFGRD96 110.0 45 60 30 4.92 0.6223
WVFGRD96 112.0 45 60 30 4.93 0.6224
WVFGRD96 114.0 45 60 30 4.93 0.6212
WVFGRD96 116.0 45 60 30 4.93 0.6190
WVFGRD96 118.0 45 60 30 4.93 0.6173
WVFGRD96 120.0 45 60 30 4.93 0.6154
WVFGRD96 122.0 45 60 30 4.93 0.6131
WVFGRD96 124.0 45 60 30 4.94 0.6102
WVFGRD96 126.0 45 60 30 4.94 0.6073
WVFGRD96 128.0 45 60 30 4.94 0.6051
WVFGRD96 130.0 45 60 30 4.94 0.6017
WVFGRD96 132.0 45 60 30 4.94 0.5989
WVFGRD96 134.0 40 65 25 4.94 0.5963
WVFGRD96 136.0 40 65 25 4.95 0.5935
WVFGRD96 138.0 40 65 25 4.95 0.5926
WVFGRD96 140.0 40 65 25 4.95 0.5906
WVFGRD96 142.0 40 65 25 4.95 0.5887
WVFGRD96 144.0 40 65 25 4.95 0.5865
WVFGRD96 146.0 40 65 25 4.95 0.5845
WVFGRD96 148.0 40 65 25 4.96 0.5807
The best solution is
WVFGRD96 112.0 45 60 30 4.93 0.6224
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -20 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00