The ANSS event ID is ak0182plgsrf and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0182plgsrf/executive.
2018/02/28 01:27:47 62.349 -148.729 39.5 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2018/02/28 01:27:47:0 62.35 -148.73 39.5 4.3 Alaska Stations used: AK.CAST AK.DHY AK.GHO AK.KLU AK.KNK AK.KTH AK.MLY AK.NEA2 AK.RC01 AK.RND AK.SAW AK.SCM AK.SSN AK.TRF AT.PMR TA.M22K TA.M24K TA.POKR Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 3.43e+22 dyne-cm Mw = 4.29 Z = 52 km Plane Strike Dip Rake NP1 290 55 -55 NP2 59 48 -129 Principal Axes: Axis Value Plunge Azimuth T 3.43e+22 4 356 N 0.00e+00 28 88 P -3.43e+22 62 259 Moment Tensor: (dyne-cm) Component Value Mxx 3.37e+22 Mxy -3.86e+21 Mxz 5.17e+21 Myy -7.27e+21 Myz 1.39e+22 Mzz -2.64e+22 #### T ####### ######## ########### ############################ ############################## ################################## #######------####################### ##--------------------###############- ---------------------------##########--- ------------------------------#######--- ----------------------------------###----- ------------- -------------------------- ------------- P -------------------##----- ------------- ------------------#####--- -------------------------------########- -----------------------------##########- --------------------------############ ---------------------############### ##--------------################## ############################## ############################ ###################### ############## Global CMT Convention Moment Tensor: R T P -2.64e+22 5.17e+21 -1.39e+22 5.17e+21 3.37e+22 3.86e+21 -1.39e+22 3.86e+21 -7.27e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180228012747/index.html |
STK = 290 DIP = 55 RAKE = -55 MW = 4.29 HS = 52.0
The NDK file is 20180228012747.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2018/02/28 01:27:47:0 62.35 -148.73 39.5 4.3 Alaska Stations used: AK.CAST AK.DHY AK.GHO AK.KLU AK.KNK AK.KTH AK.MLY AK.NEA2 AK.RC01 AK.RND AK.SAW AK.SCM AK.SSN AK.TRF AT.PMR TA.M22K TA.M24K TA.POKR Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 3.43e+22 dyne-cm Mw = 4.29 Z = 52 km Plane Strike Dip Rake NP1 290 55 -55 NP2 59 48 -129 Principal Axes: Axis Value Plunge Azimuth T 3.43e+22 4 356 N 0.00e+00 28 88 P -3.43e+22 62 259 Moment Tensor: (dyne-cm) Component Value Mxx 3.37e+22 Mxy -3.86e+21 Mxz 5.17e+21 Myy -7.27e+21 Myz 1.39e+22 Mzz -2.64e+22 #### T ####### ######## ########### ############################ ############################## ################################## #######------####################### ##--------------------###############- ---------------------------##########--- ------------------------------#######--- ----------------------------------###----- ------------- -------------------------- ------------- P -------------------##----- ------------- ------------------#####--- -------------------------------########- -----------------------------##########- --------------------------############ ---------------------############### ##--------------################## ############################## ############################ ###################### ############## Global CMT Convention Moment Tensor: R T P -2.64e+22 5.17e+21 -1.39e+22 5.17e+21 3.37e+22 3.86e+21 -1.39e+22 3.86e+21 -7.27e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180228012747/index.html |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 65 50 55 3.55 0.2865 WVFGRD96 4.0 240 70 50 3.64 0.3186 WVFGRD96 6.0 35 55 -40 3.69 0.3523 WVFGRD96 8.0 30 50 -45 3.77 0.3676 WVFGRD96 10.0 35 60 -40 3.78 0.3712 WVFGRD96 12.0 335 50 50 3.84 0.3874 WVFGRD96 14.0 330 55 45 3.85 0.3980 WVFGRD96 16.0 330 55 45 3.88 0.4036 WVFGRD96 18.0 145 60 35 3.88 0.4145 WVFGRD96 20.0 145 60 35 3.91 0.4278 WVFGRD96 22.0 145 60 35 3.93 0.4389 WVFGRD96 24.0 140 70 30 3.94 0.4497 WVFGRD96 26.0 140 70 25 3.96 0.4621 WVFGRD96 28.0 140 75 25 3.98 0.4728 WVFGRD96 30.0 310 60 -15 4.01 0.5008 WVFGRD96 32.0 310 60 -20 4.03 0.5275 WVFGRD96 34.0 305 60 -25 4.05 0.5531 WVFGRD96 36.0 305 60 -25 4.07 0.5775 WVFGRD96 38.0 300 60 -30 4.10 0.5999 WVFGRD96 40.0 295 50 -40 4.18 0.6234 WVFGRD96 42.0 295 50 -45 4.21 0.6363 WVFGRD96 44.0 295 55 -45 4.22 0.6472 WVFGRD96 46.0 295 55 -45 4.24 0.6604 WVFGRD96 48.0 290 55 -50 4.26 0.6699 WVFGRD96 50.0 290 55 -55 4.28 0.6771 WVFGRD96 52.0 290 55 -55 4.29 0.6810 WVFGRD96 54.0 290 55 -55 4.29 0.6807 WVFGRD96 56.0 290 55 -55 4.30 0.6763 WVFGRD96 58.0 295 60 -45 4.30 0.6712 WVFGRD96 60.0 295 60 -45 4.30 0.6643 WVFGRD96 62.0 290 60 -50 4.31 0.6566 WVFGRD96 64.0 290 60 -50 4.31 0.6486 WVFGRD96 66.0 295 65 -45 4.31 0.6392 WVFGRD96 68.0 295 65 -45 4.31 0.6320 WVFGRD96 70.0 295 65 -40 4.31 0.6260 WVFGRD96 72.0 295 65 -40 4.31 0.6194 WVFGRD96 74.0 295 65 -40 4.31 0.6124 WVFGRD96 76.0 295 70 -40 4.32 0.6079 WVFGRD96 78.0 295 70 -40 4.32 0.6031 WVFGRD96 80.0 295 70 -40 4.32 0.5977 WVFGRD96 82.0 295 70 -40 4.32 0.5916 WVFGRD96 84.0 295 70 -40 4.32 0.5857 WVFGRD96 86.0 295 70 -40 4.32 0.5796 WVFGRD96 88.0 295 70 -40 4.32 0.5735 WVFGRD96 90.0 295 75 -40 4.33 0.5678 WVFGRD96 92.0 295 75 -40 4.33 0.5632 WVFGRD96 94.0 295 75 -40 4.34 0.5580 WVFGRD96 96.0 295 75 -40 4.34 0.5530 WVFGRD96 98.0 300 75 -30 4.33 0.5488
The best solution is
WVFGRD96 52.0 290 55 -55 4.29 0.6810
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00