The ANSS event ID is ak0182ksu6cf and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0182ksu6cf/executive.
2018/02/25 11:32:53 63.215 -150.591 132.8 4.2 Alaska
USGS/SLU Moment Tensor Solution ENS 2018/02/25 11:32:53:0 63.22 -150.59 132.8 4.2 Alaska Stations used: AK.BPAW AK.CAST AK.CUT AK.GHO AK.KNK AK.KTH AK.NEA2 AK.PAX AK.RND AK.SAW AK.SCM AK.SSN AK.TRF AT.PMR TA.M19K Filtering commands used: cut o DIST/3.1 -30 o DIST/3.1 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 2.19e+22 dyne-cm Mw = 4.16 Z = 138 km Plane Strike Dip Rake NP1 35 84 98 NP2 165 10 40 Principal Axes: Axis Value Plunge Azimuth T 2.19e+22 51 314 N 0.00e+00 8 215 P -2.19e+22 38 119 Moment Tensor: (dyne-cm) Component Value Mxx 1.13e+21 Mxy 1.32e+21 Mxz 1.25e+22 Myy -5.94e+21 Myz -1.70e+22 Mzz 4.81e+21 ############## -##################### --########################-- -#########################---- -##########################------- -##########################--------- --######## #############------------ --######### T ############-------------- -########## ###########--------------- --#######################----------------- --######################------------------ --####################-------------------- --###################--------------------- --#################----------- ------- --###############------------- P ------- --#############-------------- ------ --##########------------------------ --########------------------------ --####------------------------ ---------------------------- ##-------------------- ###----------- Global CMT Convention Moment Tensor: R T P 4.81e+21 1.25e+22 1.70e+22 1.25e+22 1.13e+21 -1.32e+21 1.70e+22 -1.32e+21 -5.94e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180225113253/index.html |
STK = 165 DIP = 10 RAKE = 40 MW = 4.16 HS = 138.0
The NDK file is 20180225113253.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.1 -30 o DIST/3.1 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 30 40 80 3.35 0.2053 WVFGRD96 4.0 40 20 -80 3.52 0.2545 WVFGRD96 6.0 40 25 -80 3.53 0.2781 WVFGRD96 8.0 40 20 -80 3.57 0.2755 WVFGRD96 10.0 185 75 65 3.54 0.2583 WVFGRD96 12.0 180 80 60 3.54 0.2572 WVFGRD96 14.0 180 80 55 3.55 0.2561 WVFGRD96 16.0 180 80 55 3.56 0.2538 WVFGRD96 18.0 175 85 50 3.58 0.2506 WVFGRD96 20.0 175 75 50 3.59 0.2497 WVFGRD96 22.0 180 70 55 3.61 0.2506 WVFGRD96 24.0 180 65 55 3.63 0.2531 WVFGRD96 26.0 185 60 55 3.64 0.2581 WVFGRD96 28.0 110 50 65 3.71 0.2620 WVFGRD96 30.0 115 55 70 3.74 0.2628 WVFGRD96 32.0 170 60 50 3.71 0.2554 WVFGRD96 34.0 170 60 50 3.73 0.2496 WVFGRD96 36.0 165 60 45 3.75 0.2436 WVFGRD96 38.0 165 60 45 3.78 0.2395 WVFGRD96 40.0 45 50 -45 3.85 0.2537 WVFGRD96 42.0 40 50 -45 3.90 0.2619 WVFGRD96 44.0 45 55 -45 3.90 0.2684 WVFGRD96 46.0 45 55 -45 3.92 0.2800 WVFGRD96 48.0 55 65 -55 3.91 0.2941 WVFGRD96 50.0 50 65 -55 3.94 0.3099 WVFGRD96 52.0 50 65 -55 3.96 0.3238 WVFGRD96 54.0 55 70 -50 3.97 0.3366 WVFGRD96 56.0 55 70 -50 3.98 0.3453 WVFGRD96 58.0 55 70 -50 4.00 0.3515 WVFGRD96 60.0 50 70 -50 4.02 0.3564 WVFGRD96 62.0 50 70 -45 4.04 0.3603 WVFGRD96 64.0 50 70 -45 4.05 0.3637 WVFGRD96 66.0 50 70 -45 4.05 0.3646 WVFGRD96 68.0 55 75 -40 4.05 0.3642 WVFGRD96 70.0 55 75 -40 4.05 0.3636 WVFGRD96 72.0 55 75 -40 4.06 0.3617 WVFGRD96 74.0 55 75 -40 4.06 0.3592 WVFGRD96 76.0 55 75 15 4.04 0.3797 WVFGRD96 78.0 140 35 40 4.12 0.4221 WVFGRD96 80.0 140 35 40 4.13 0.4733 WVFGRD96 82.0 140 30 40 4.13 0.5162 WVFGRD96 84.0 140 30 35 4.14 0.5476 WVFGRD96 86.0 140 30 35 4.15 0.5726 WVFGRD96 88.0 140 30 35 4.15 0.5867 WVFGRD96 90.0 135 35 30 4.17 0.5967 WVFGRD96 92.0 135 35 30 4.18 0.6059 WVFGRD96 94.0 135 35 30 4.18 0.6150 WVFGRD96 96.0 135 35 30 4.18 0.6221 WVFGRD96 98.0 135 35 30 4.18 0.6291 WVFGRD96 100.0 135 35 30 4.18 0.6341 WVFGRD96 102.0 135 35 30 4.19 0.6393 WVFGRD96 104.0 135 35 30 4.19 0.6455 WVFGRD96 106.0 135 35 30 4.19 0.6508 WVFGRD96 108.0 135 35 30 4.19 0.6549 WVFGRD96 110.0 135 35 30 4.19 0.6571 WVFGRD96 112.0 135 35 30 4.19 0.6594 WVFGRD96 114.0 175 10 50 4.14 0.6650 WVFGRD96 116.0 170 10 45 4.14 0.6688 WVFGRD96 118.0 170 10 45 4.14 0.6701 WVFGRD96 120.0 170 10 45 4.15 0.6749 WVFGRD96 122.0 170 10 45 4.15 0.6770 WVFGRD96 124.0 170 10 45 4.15 0.6790 WVFGRD96 126.0 165 10 40 4.15 0.6806 WVFGRD96 128.0 170 10 45 4.15 0.6823 WVFGRD96 130.0 165 10 40 4.16 0.6831 WVFGRD96 132.0 165 10 40 4.16 0.6834 WVFGRD96 134.0 165 10 40 4.16 0.6840 WVFGRD96 136.0 165 10 40 4.16 0.6847 WVFGRD96 138.0 165 10 40 4.16 0.6853 WVFGRD96 140.0 165 10 40 4.16 0.6850 WVFGRD96 142.0 165 10 40 4.17 0.6848 WVFGRD96 144.0 165 10 40 4.17 0.6837 WVFGRD96 146.0 165 10 40 4.17 0.6824 WVFGRD96 148.0 165 10 40 4.17 0.6817
The best solution is
WVFGRD96 138.0 165 10 40 4.16 0.6853
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.1 -30 o DIST/3.1 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00