The ANSS event ID is us2000cpkg and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us2000cpkg/executive.
2018/01/26 03:32:08 42.533 -111.389 10.0 4.4 Idaho
USGS/SLU Moment Tensor Solution
ENS 2018/01/26 03:32:08:0 42.53 -111.39 10.0 4.4 Idaho
Stations used:
IW.FLWY IW.FXWY IW.IMW IW.LOHW IW.MOOW IW.REDW IW.SNOW
IW.TPAW TA.H17A TA.O20A US.AHID US.BW06 US.DUG US.ELK
US.HLID US.HWUT US.RLMT UU.BGU UU.BRPU UU.BSUT UU.CTU
UU.CVRU UU.FMC UU.HVU UU.MPU UU.NLU UU.RDMU UU.SPU UU.SRU
UU.SWUT UU.TMU WY.YFT WY.YHL WY.YMP WY.YNM WY.YNR
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 3.94e+22 dyne-cm
Mw = 4.33
Z = 11 km
Plane Strike Dip Rake
NP1 145 76 -159
NP2 50 70 -15
Principal Axes:
Axis Value Plunge Azimuth
T 3.94e+22 4 277
N 0.00e+00 65 178
P -3.94e+22 24 9
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.13e+22
Mxy -9.43e+21
Mxz -1.43e+22
Myy 3.79e+22
Myz -4.94e+21
Mzz -6.55e+21
--------------
------------ -------
##------------- P ----------
####------------ -----------
######---------------------------#
########-------------------------###
##########-----------------------#####
############---------------------#######
###########------------------#########
T ############----------------###########
#############-------------#############
#################-----------##############
###################-------################
###################---##################
########################################
################-----#################
############----------##############
#######---------------############
----------------------########
------------------------####
----------------------
--------------
Global CMT Convention Moment Tensor:
R T P
-6.55e+21 -1.43e+22 4.94e+21
-1.43e+22 -3.13e+22 9.43e+21
4.94e+21 9.43e+21 3.79e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180126033208/index.html
|
STK = 50
DIP = 70
RAKE = -15
MW = 4.33
HS = 11.0
The NDK file is 20180126033208.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2018/01/26 03:32:08:0 42.53 -111.39 10.0 4.4 Idaho
Stations used:
IW.FLWY IW.FXWY IW.IMW IW.LOHW IW.MOOW IW.REDW IW.SNOW
IW.TPAW TA.H17A TA.O20A US.AHID US.BW06 US.DUG US.ELK
US.HLID US.HWUT US.RLMT UU.BGU UU.BRPU UU.BSUT UU.CTU
UU.CVRU UU.FMC UU.HVU UU.MPU UU.NLU UU.RDMU UU.SPU UU.SRU
UU.SWUT UU.TMU WY.YFT WY.YHL WY.YMP WY.YNM WY.YNR
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 3.94e+22 dyne-cm
Mw = 4.33
Z = 11 km
Plane Strike Dip Rake
NP1 145 76 -159
NP2 50 70 -15
Principal Axes:
Axis Value Plunge Azimuth
T 3.94e+22 4 277
N 0.00e+00 65 178
P -3.94e+22 24 9
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.13e+22
Mxy -9.43e+21
Mxz -1.43e+22
Myy 3.79e+22
Myz -4.94e+21
Mzz -6.55e+21
--------------
------------ -------
##------------- P ----------
####------------ -----------
######---------------------------#
########-------------------------###
##########-----------------------#####
############---------------------#######
###########------------------#########
T ############----------------###########
#############-------------#############
#################-----------##############
###################-------################
###################---##################
########################################
################-----#################
############----------##############
#######---------------############
----------------------########
------------------------####
----------------------
--------------
Global CMT Convention Moment Tensor:
R T P
-6.55e+21 -1.43e+22 4.94e+21
-1.43e+22 -3.13e+22 9.43e+21
4.94e+21 9.43e+21 3.79e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180126033208/index.html
|
Regional Moment Tensor (Mwr) Moment 4.594e+15 N-m Magnitude 4.4 Mwr Depth 15.0 km Percent DC 68 % Half Duration – Catalog US Data Source US1 Contributor US1 Nodal Planes Plane Strike Dip Rake NP1 146 77 -162 NP2 52 73 -14 Principal Axes Axis Value Plunge Azimuth T 4.940e+15 N-m 3 278 N -0.795e+15 N-m 68 181 P -4.144e+15 N-m 22 10 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 235 85 0 3.84 0.2041
WVFGRD96 2.0 235 80 0 3.98 0.2688
WVFGRD96 3.0 235 70 -5 4.06 0.2927
WVFGRD96 4.0 45 60 -30 4.12 0.3136
WVFGRD96 5.0 45 60 -25 4.14 0.3413
WVFGRD96 6.0 50 65 -20 4.18 0.3648
WVFGRD96 7.0 50 70 -20 4.21 0.3852
WVFGRD96 8.0 50 65 -20 4.27 0.4016
WVFGRD96 9.0 50 70 -20 4.29 0.4132
WVFGRD96 10.0 50 70 -20 4.31 0.4200
WVFGRD96 11.0 50 70 -15 4.33 0.4224
WVFGRD96 12.0 55 75 -15 4.36 0.4223
WVFGRD96 13.0 55 75 -15 4.38 0.4202
WVFGRD96 14.0 55 75 -15 4.39 0.4150
WVFGRD96 15.0 55 75 -15 4.41 0.4071
WVFGRD96 16.0 55 75 -15 4.42 0.3976
WVFGRD96 17.0 55 75 -15 4.43 0.3862
WVFGRD96 18.0 55 75 -15 4.44 0.3732
WVFGRD96 19.0 55 75 -15 4.44 0.3595
WVFGRD96 20.0 55 75 -15 4.45 0.3453
WVFGRD96 21.0 55 75 -15 4.46 0.3300
WVFGRD96 22.0 55 75 -20 4.47 0.3165
WVFGRD96 23.0 55 75 -20 4.47 0.3025
WVFGRD96 24.0 55 75 -20 4.47 0.2902
WVFGRD96 25.0 55 75 -20 4.48 0.2780
WVFGRD96 26.0 55 70 -15 4.47 0.2673
WVFGRD96 27.0 55 70 -15 4.48 0.2570
WVFGRD96 28.0 55 70 -15 4.48 0.2472
WVFGRD96 29.0 55 70 -15 4.48 0.2379
The best solution is
WVFGRD96 11.0 50 70 -15 4.33 0.4224
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00