The ANSS event ID is ak018vt8d37 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak018vt8d37/executive.
2018/01/19 23:55:05 63.977 -148.990 129.3 4.6 Alaska
USGS/SLU Moment Tensor Solution ENS 2018/01/19 23:55:05:0 63.98 -148.99 129.3 4.6 Alaska Stations used: AK.BPAW AK.BWN AK.CAST AK.CCB AK.CUT AK.DHY AK.DIV AK.GHO AK.HDA AK.KNK AK.KTH AK.MCK AK.MDM AK.MLY AK.NEA2 AK.PAX AK.PPD AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.TRF AK.WRH AT.MENT AT.PMR IM.IL31 IU.COLA TA.H21K TA.I20K TA.I21K TA.I23K TA.I26K TA.J20K TA.J25K TA.J26L TA.L26K TA.L27K TA.POKR Filtering commands used: cut o DIST/3.7 -30 o DIST/3.7 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.00e+23 dyne-cm Mw = 4.60 Z = 136 km Plane Strike Dip Rake NP1 38 85 155 NP2 130 65 5 Principal Axes: Axis Value Plunge Azimuth T 1.00e+23 21 351 N 0.00e+00 65 208 P -1.00e+23 14 87 Moment Tensor: (dyne-cm) Component Value Mxx 8.50e+22 Mxy -1.90e+22 Mxz 3.14e+22 Myy -9.17e+22 Myz -2.87e+22 Mzz 6.68e+21 ############## ####### ############ ########## T #############-- ########### ############---- -##########################------- ---########################--------- -----######################----------- ------####################-------------- -------##################--------------- ----------###############------------- - -----------############--------------- P - -------------#########---------------- - ---------------#####---------------------- ----------------##---------------------- ----------------##---------------------- --------------######------------------ -----------###########-------------- --------#################--------- -----######################### --########################## ###################### ############## Global CMT Convention Moment Tensor: R T P 6.68e+21 3.14e+22 2.87e+22 3.14e+22 8.50e+22 1.90e+22 2.87e+22 1.90e+22 -9.17e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180119235505/index.html |
STK = 130 DIP = 65 RAKE = 5 MW = 4.60 HS = 136.0
The NDK file is 20180119235505.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.7 -30 o DIST/3.7 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 45 65 -20 3.53 0.1902 WVFGRD96 4.0 45 60 -15 3.62 0.2194 WVFGRD96 6.0 50 65 -10 3.69 0.2465 WVFGRD96 8.0 50 65 -15 3.78 0.2676 WVFGRD96 10.0 55 70 15 3.82 0.2713 WVFGRD96 12.0 50 70 10 3.85 0.2664 WVFGRD96 14.0 50 75 10 3.88 0.2543 WVFGRD96 16.0 140 75 20 3.90 0.2440 WVFGRD96 18.0 140 75 20 3.93 0.2451 WVFGRD96 20.0 140 75 20 3.96 0.2465 WVFGRD96 22.0 140 80 20 3.98 0.2491 WVFGRD96 24.0 140 80 20 4.00 0.2512 WVFGRD96 26.0 140 80 20 4.02 0.2514 WVFGRD96 28.0 140 80 20 4.03 0.2482 WVFGRD96 30.0 140 80 25 4.04 0.2422 WVFGRD96 32.0 140 80 25 4.04 0.2337 WVFGRD96 34.0 140 75 20 4.05 0.2256 WVFGRD96 36.0 140 75 20 4.06 0.2201 WVFGRD96 38.0 140 75 20 4.09 0.2202 WVFGRD96 40.0 145 55 20 4.17 0.2312 WVFGRD96 42.0 140 65 20 4.19 0.2354 WVFGRD96 44.0 140 70 20 4.20 0.2408 WVFGRD96 46.0 140 70 15 4.22 0.2475 WVFGRD96 48.0 140 70 20 4.25 0.2561 WVFGRD96 50.0 140 70 20 4.26 0.2663 WVFGRD96 52.0 140 70 15 4.28 0.2777 WVFGRD96 54.0 140 70 15 4.29 0.2914 WVFGRD96 56.0 140 65 15 4.32 0.3099 WVFGRD96 58.0 140 65 15 4.33 0.3317 WVFGRD96 60.0 140 60 15 4.36 0.3561 WVFGRD96 62.0 140 60 15 4.38 0.3828 WVFGRD96 64.0 140 60 15 4.39 0.4103 WVFGRD96 66.0 140 60 15 4.41 0.4356 WVFGRD96 68.0 140 60 15 4.42 0.4582 WVFGRD96 70.0 140 55 15 4.44 0.4741 WVFGRD96 72.0 140 55 15 4.45 0.4874 WVFGRD96 74.0 135 55 10 4.46 0.5066 WVFGRD96 76.0 135 55 10 4.47 0.5301 WVFGRD96 78.0 135 55 10 4.48 0.5550 WVFGRD96 80.0 135 55 10 4.49 0.5744 WVFGRD96 82.0 135 55 10 4.50 0.5865 WVFGRD96 84.0 135 55 10 4.50 0.5939 WVFGRD96 86.0 135 55 10 4.51 0.5999 WVFGRD96 88.0 135 55 10 4.51 0.6052 WVFGRD96 90.0 135 55 10 4.52 0.6105 WVFGRD96 92.0 135 55 10 4.52 0.6167 WVFGRD96 94.0 135 55 10 4.53 0.6222 WVFGRD96 96.0 135 55 10 4.53 0.6266 WVFGRD96 98.0 135 55 10 4.54 0.6304 WVFGRD96 100.0 135 55 10 4.54 0.6334 WVFGRD96 102.0 135 60 10 4.54 0.6356 WVFGRD96 104.0 135 60 10 4.54 0.6400 WVFGRD96 106.0 130 60 5 4.55 0.6430 WVFGRD96 108.0 130 60 5 4.55 0.6454 WVFGRD96 110.0 130 60 5 4.55 0.6488 WVFGRD96 112.0 130 60 5 4.56 0.6528 WVFGRD96 114.0 130 60 5 4.56 0.6550 WVFGRD96 116.0 130 60 5 4.57 0.6560 WVFGRD96 118.0 130 60 5 4.57 0.6588 WVFGRD96 120.0 130 60 5 4.58 0.6602 WVFGRD96 122.0 130 60 5 4.58 0.6607 WVFGRD96 124.0 130 60 5 4.58 0.6625 WVFGRD96 126.0 130 60 5 4.59 0.6613 WVFGRD96 128.0 130 60 5 4.59 0.6616 WVFGRD96 130.0 130 65 5 4.59 0.6627 WVFGRD96 132.0 130 65 5 4.59 0.6619 WVFGRD96 134.0 130 65 5 4.59 0.6625 WVFGRD96 136.0 130 65 5 4.60 0.6633 WVFGRD96 138.0 130 65 0 4.60 0.6626 WVFGRD96 140.0 130 65 0 4.60 0.6623 WVFGRD96 142.0 130 65 0 4.61 0.6602 WVFGRD96 144.0 130 65 5 4.61 0.6604 WVFGRD96 146.0 130 65 0 4.61 0.6577 WVFGRD96 148.0 130 65 0 4.62 0.6568
The best solution is
WVFGRD96 136.0 130 65 5 4.60 0.6633
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.7 -30 o DIST/3.7 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00