The ANSS event ID is us1000bjkn and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us1000bjkn/executive.
2017/11/30 21:47:31 39.198 -75.433 9.9 4.1 Delaware
USGS/SLU Moment Tensor Solution
ENS 2017/11/30 21:47:31:0 39.20 -75.43 9.9 4.1 Delaware
Stations used:
IU.SSPA LD.BRNJ LD.KSCT LD.LUPA LD.MMNY LD.MVL LD.ODNJ
LD.PAL LD.TRNY LD.UCCT LD.WUPA N4.K57A N4.L56A N4.L59A
N4.M55A N4.M57A N4.M63A N4.N58A N4.O54A N4.P57A N4.P61A
N4.Q56A N4.R55A N4.R58B N4.R61A N4.S57A N4.S61A N4.T57A
N4.T59A N4.T60A N4.U59A N4.V61A NE.QUA2 NE.TRY NE.WSPT
NE.YLE PE.PAHR PE.PALB TA.L61B US.MCWV
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
br c 0.12 0.25 n 4 p 2
Best Fitting Double Couple
Mo = 2.34e+22 dyne-cm
Mw = 4.18
Z = 3 km
Plane Strike Dip Rake
NP1 357 69 148
NP2 100 60 25
Principal Axes:
Axis Value Plunge Azimuth
T 2.34e+22 38 316
N 0.00e+00 52 147
P -2.34e+22 5 50
Moment Tensor: (dyne-cm)
Component Value
Mxx -2.03e+21
Mxy -1.88e+22
Mxz 6.72e+21
Myy -6.55e+21
Myz -9.60e+21
Mzz 8.58e+21
#######-------
############----------
################------------
##################-----------
###### ###########----------- P
####### T ############---------- -
######## ############---------------
#########################---------------
#########################---------------
-#########################----------------
---#######################----------------
-----######################---------------
-------####################---------------
---------#################-------------#
--------------###########----------#####
------------------------##############
-----------------------#############
----------------------############
-------------------###########
------------------##########
--------------########
---------#####
Global CMT Convention Moment Tensor:
R T P
8.58e+21 6.72e+21 9.60e+21
6.72e+21 -2.03e+21 1.88e+22
9.60e+21 1.88e+22 -6.55e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20171130214731/index.html
|
STK = 100
DIP = 60
RAKE = 25
MW = 4.18
HS = 3.0
The NDK file is 20171130214731.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2017/11/30 21:47:31:0 39.20 -75.43 9.9 4.1 Delaware
Stations used:
IU.SSPA LD.BRNJ LD.KSCT LD.LUPA LD.MMNY LD.MVL LD.ODNJ
LD.PAL LD.TRNY LD.UCCT LD.WUPA N4.K57A N4.L56A N4.L59A
N4.M55A N4.M57A N4.M63A N4.N58A N4.O54A N4.P57A N4.P61A
N4.Q56A N4.R55A N4.R58B N4.R61A N4.S57A N4.S61A N4.T57A
N4.T59A N4.T60A N4.U59A N4.V61A NE.QUA2 NE.TRY NE.WSPT
NE.YLE PE.PAHR PE.PALB TA.L61B US.MCWV
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
br c 0.12 0.25 n 4 p 2
Best Fitting Double Couple
Mo = 2.34e+22 dyne-cm
Mw = 4.18
Z = 3 km
Plane Strike Dip Rake
NP1 357 69 148
NP2 100 60 25
Principal Axes:
Axis Value Plunge Azimuth
T 2.34e+22 38 316
N 0.00e+00 52 147
P -2.34e+22 5 50
Moment Tensor: (dyne-cm)
Component Value
Mxx -2.03e+21
Mxy -1.88e+22
Mxz 6.72e+21
Myy -6.55e+21
Myz -9.60e+21
Mzz 8.58e+21
#######-------
############----------
################------------
##################-----------
###### ###########----------- P
####### T ############---------- -
######## ############---------------
#########################---------------
#########################---------------
-#########################----------------
---#######################----------------
-----######################---------------
-------####################---------------
---------#################-------------#
--------------###########----------#####
------------------------##############
-----------------------#############
----------------------############
-------------------###########
------------------##########
--------------########
---------#####
Global CMT Convention Moment Tensor:
R T P
8.58e+21 6.72e+21 9.60e+21
6.72e+21 -2.03e+21 1.88e+22
9.60e+21 1.88e+22 -6.55e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20171130214731/index.html
|
egional Moment Tensor (Mwr) Moment 2.029e+15 N-m Magnitude 4.1 Mwr Depth 3.0 km Percent DC 76 % Half Duration – Catalog US Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 355 55 146 NP2 106 62 40 Principal Axes Axis Value Plunge Azimuth T 1.891e+15 N-m 47 323 N 0.252e+15 N-m 43 135 P -2.143e+15 N-m 4 229 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 100 60 20 4.12 0.6153
WVFGRD96 2.0 100 65 25 4.15 0.6340
WVFGRD96 3.0 100 60 25 4.18 0.6378
WVFGRD96 4.0 100 60 25 4.19 0.6257
WVFGRD96 5.0 90 55 10 4.20 0.6059
WVFGRD96 6.0 85 55 -10 4.20 0.5980
WVFGRD96 7.0 85 55 -10 4.21 0.5985
WVFGRD96 8.0 90 60 -15 4.20 0.5991
WVFGRD96 9.0 90 60 -15 4.21 0.5998
WVFGRD96 10.0 85 55 -10 4.23 0.5974
WVFGRD96 11.0 90 60 -15 4.22 0.5960
WVFGRD96 12.0 90 60 -15 4.23 0.5935
WVFGRD96 13.0 85 60 -10 4.23 0.5906
WVFGRD96 14.0 85 60 -10 4.23 0.5873
WVFGRD96 15.0 85 60 -10 4.24 0.5836
WVFGRD96 16.0 85 60 -10 4.24 0.5798
WVFGRD96 17.0 85 65 -10 4.25 0.5765
WVFGRD96 18.0 85 65 -10 4.25 0.5738
WVFGRD96 19.0 85 65 -10 4.26 0.5707
WVFGRD96 20.0 85 60 -10 4.27 0.5659
WVFGRD96 21.0 85 65 -10 4.27 0.5613
WVFGRD96 22.0 85 65 -10 4.28 0.5571
WVFGRD96 23.0 85 65 -10 4.28 0.5527
WVFGRD96 24.0 90 65 10 4.29 0.5494
WVFGRD96 25.0 90 65 10 4.30 0.5466
WVFGRD96 26.0 90 65 10 4.30 0.5439
WVFGRD96 27.0 90 65 10 4.31 0.5409
WVFGRD96 28.0 90 65 10 4.32 0.5375
WVFGRD96 29.0 90 70 10 4.32 0.5345
The best solution is
WVFGRD96 3.0 100 60 25 4.18 0.6378
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00