The ANSS event ID is ak017e7b798p and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak017e7b798p/executive.
2017/11/05 17:03:02 60.225 -153.076 139.6 4.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2017/11/05 17:03:02:0 60.22 -153.08 139.6 4.8 Alaska Stations used: AK.BRLK AK.CAPN AK.CAST AK.CNP AK.CUT AK.FIRE AK.GHO AK.GLI AK.HOM AK.KNK AK.PPLA AK.PWL AK.RC01 AK.SAW AK.SKN AK.SSN AK.SWD AT.PMR AT.SVW2 AT.TTA AV.ILSW II.KDAK TA.K20K TA.L18K TA.L19K TA.M16K TA.M17K TA.M20K TA.M22K TA.N17K TA.N18K TA.N19K TA.O16K TA.O18K TA.O19K TA.O22K TA.P18K TA.P19K TA.Q20K Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.00e+23 dyne-cm Mw = 4.80 Z = 134 km Plane Strike Dip Rake NP1 75 75 25 NP2 338 66 164 Principal Axes: Axis Value Plunge Azimuth T 2.00e+23 28 298 N 0.00e+00 61 104 P -2.00e+23 6 205 Moment Tensor: (dyne-cm) Component Value Mxx -1.27e+23 Mxy -1.41e+23 Mxz 5.84e+22 Myy 8.45e+22 Myz -6.41e+22 Mzz 4.22e+22 -------------- ######---------------- ###########----------------- ##############---------------- #################----------------- ####################---------------- #### ###############---------------- ##### T ################---------------- ##### #################--------------# ##########################------------#### ###########################-------######## ############################--############ #########################---############## #################-----------############ ----------------------------############ ----------------------------########## ---------------------------######### --------------------------######## ------------------------###### ---- ----------------##### - P ---------------### -------------- Global CMT Convention Moment Tensor: R T P 4.22e+22 5.84e+22 6.41e+22 5.84e+22 -1.27e+23 1.41e+23 6.41e+22 1.41e+23 8.45e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20171105170302/index.html |
STK = 75 DIP = 75 RAKE = 25 MW = 4.80 HS = 134.0
The NDK file is 20171105170302.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 335 90 -15 3.74 0.1679 WVFGRD96 4.0 335 70 0 3.85 0.1887 WVFGRD96 6.0 330 70 -10 3.92 0.2054 WVFGRD96 8.0 335 65 0 4.00 0.2192 WVFGRD96 10.0 335 70 5 4.04 0.2224 WVFGRD96 12.0 335 80 15 4.08 0.2223 WVFGRD96 14.0 335 80 15 4.11 0.2190 WVFGRD96 16.0 335 80 15 4.14 0.2101 WVFGRD96 18.0 335 80 15 4.16 0.1974 WVFGRD96 20.0 335 85 20 4.17 0.1822 WVFGRD96 22.0 335 85 20 4.18 0.1657 WVFGRD96 24.0 340 80 25 4.19 0.1491 WVFGRD96 26.0 340 75 25 4.19 0.1343 WVFGRD96 28.0 340 75 25 4.19 0.1208 WVFGRD96 30.0 340 75 25 4.19 0.1086 WVFGRD96 32.0 340 70 25 4.19 0.0973 WVFGRD96 34.0 340 70 25 4.19 0.0890 WVFGRD96 36.0 340 75 30 4.21 0.0857 WVFGRD96 38.0 340 75 30 4.24 0.0843 WVFGRD96 40.0 345 70 40 4.31 0.0855 WVFGRD96 42.0 345 70 40 4.34 0.0844 WVFGRD96 44.0 345 75 35 4.35 0.0825 WVFGRD96 46.0 240 55 -5 4.37 0.0824 WVFGRD96 48.0 240 55 -5 4.39 0.0847 WVFGRD96 50.0 240 55 -5 4.40 0.0873 WVFGRD96 52.0 240 55 -5 4.42 0.0902 WVFGRD96 54.0 240 55 -10 4.44 0.0932 WVFGRD96 56.0 235 55 -15 4.45 0.0965 WVFGRD96 58.0 240 60 -10 4.45 0.1005 WVFGRD96 60.0 240 60 -5 4.46 0.1056 WVFGRD96 62.0 240 60 -5 4.48 0.1124 WVFGRD96 64.0 240 60 -10 4.50 0.1212 WVFGRD96 66.0 240 60 -10 4.51 0.1313 WVFGRD96 68.0 240 65 -10 4.52 0.1414 WVFGRD96 70.0 240 65 -10 4.53 0.1504 WVFGRD96 72.0 245 70 -10 4.54 0.1590 WVFGRD96 74.0 245 70 -15 4.56 0.1759 WVFGRD96 76.0 245 75 -15 4.58 0.2021 WVFGRD96 78.0 250 80 -15 4.60 0.2342 WVFGRD96 80.0 70 90 20 4.62 0.2690 WVFGRD96 82.0 70 85 25 4.64 0.3081 WVFGRD96 84.0 75 80 30 4.67 0.3483 WVFGRD96 86.0 70 80 30 4.68 0.3882 WVFGRD96 88.0 70 80 30 4.70 0.4273 WVFGRD96 90.0 75 75 30 4.72 0.4664 WVFGRD96 92.0 75 75 35 4.74 0.5011 WVFGRD96 94.0 75 75 35 4.75 0.5252 WVFGRD96 96.0 75 75 35 4.75 0.5370 WVFGRD96 98.0 75 75 35 4.76 0.5407 WVFGRD96 100.0 75 75 35 4.76 0.5427 WVFGRD96 102.0 75 75 35 4.76 0.5449 WVFGRD96 104.0 75 75 35 4.77 0.5465 WVFGRD96 106.0 75 75 30 4.77 0.5476 WVFGRD96 108.0 75 75 30 4.77 0.5507 WVFGRD96 110.0 75 75 30 4.77 0.5528 WVFGRD96 112.0 75 75 30 4.78 0.5544 WVFGRD96 114.0 75 75 30 4.78 0.5562 WVFGRD96 116.0 75 75 30 4.78 0.5569 WVFGRD96 118.0 75 75 25 4.78 0.5581 WVFGRD96 120.0 75 75 25 4.78 0.5585 WVFGRD96 122.0 75 75 25 4.79 0.5609 WVFGRD96 124.0 75 75 25 4.79 0.5625 WVFGRD96 126.0 75 75 25 4.79 0.5648 WVFGRD96 128.0 75 75 25 4.79 0.5653 WVFGRD96 130.0 75 75 25 4.80 0.5655 WVFGRD96 132.0 75 75 25 4.80 0.5652 WVFGRD96 134.0 75 75 25 4.80 0.5667 WVFGRD96 136.0 75 75 25 4.80 0.5665 WVFGRD96 138.0 75 75 25 4.81 0.5661 WVFGRD96 140.0 75 75 25 4.81 0.5637 WVFGRD96 142.0 75 75 25 4.81 0.5643 WVFGRD96 144.0 75 75 25 4.81 0.5632 WVFGRD96 146.0 75 75 25 4.81 0.5616 WVFGRD96 148.0 75 75 25 4.82 0.5588 WVFGRD96 150.0 75 75 25 4.82 0.5581 WVFGRD96 152.0 75 75 25 4.82 0.5556 WVFGRD96 154.0 75 75 25 4.82 0.5518 WVFGRD96 156.0 75 75 25 4.82 0.5504 WVFGRD96 158.0 75 75 25 4.82 0.5477
The best solution is
WVFGRD96 134.0 75 75 25 4.80 0.5667
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00