The ANSS event ID is ak017e7b798p and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak017e7b798p/executive.
2017/11/05 17:03:02 60.225 -153.076 139.6 4.8 Alaska
USGS/SLU Moment Tensor Solution
ENS 2017/11/05 17:03:02:0 60.22 -153.08 139.6 4.8 Alaska
Stations used:
AK.BRLK AK.CAPN AK.CAST AK.CNP AK.CUT AK.FIRE AK.GHO AK.GLI
AK.HOM AK.KNK AK.PPLA AK.PWL AK.RC01 AK.SAW AK.SKN AK.SSN
AK.SWD AT.PMR AT.SVW2 AT.TTA AV.ILSW II.KDAK TA.K20K
TA.L18K TA.L19K TA.M16K TA.M17K TA.M20K TA.M22K TA.N17K
TA.N18K TA.N19K TA.O16K TA.O18K TA.O19K TA.O22K TA.P18K
TA.P19K TA.Q20K
Filtering commands used:
cut o DIST/3.5 -40 o DIST/3.5 +70
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 2.00e+23 dyne-cm
Mw = 4.80
Z = 134 km
Plane Strike Dip Rake
NP1 75 75 25
NP2 338 66 164
Principal Axes:
Axis Value Plunge Azimuth
T 2.00e+23 28 298
N 0.00e+00 61 104
P -2.00e+23 6 205
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.27e+23
Mxy -1.41e+23
Mxz 5.84e+22
Myy 8.45e+22
Myz -6.41e+22
Mzz 4.22e+22
--------------
######----------------
###########-----------------
##############----------------
#################-----------------
####################----------------
#### ###############----------------
##### T ################----------------
##### #################--------------#
##########################------------####
###########################-------########
############################--############
#########################---##############
#################-----------############
----------------------------############
----------------------------##########
---------------------------#########
--------------------------########
------------------------######
---- ----------------#####
- P ---------------###
--------------
Global CMT Convention Moment Tensor:
R T P
4.22e+22 5.84e+22 6.41e+22
5.84e+22 -1.27e+23 1.41e+23
6.41e+22 1.41e+23 8.45e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20171105170302/index.html
|
STK = 75
DIP = 75
RAKE = 25
MW = 4.80
HS = 134.0
The NDK file is 20171105170302.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 2.0 335 90 -15 3.74 0.1679
WVFGRD96 4.0 335 70 0 3.85 0.1887
WVFGRD96 6.0 330 70 -10 3.92 0.2054
WVFGRD96 8.0 335 65 0 4.00 0.2192
WVFGRD96 10.0 335 70 5 4.04 0.2224
WVFGRD96 12.0 335 80 15 4.08 0.2223
WVFGRD96 14.0 335 80 15 4.11 0.2190
WVFGRD96 16.0 335 80 15 4.14 0.2101
WVFGRD96 18.0 335 80 15 4.16 0.1974
WVFGRD96 20.0 335 85 20 4.17 0.1822
WVFGRD96 22.0 335 85 20 4.18 0.1657
WVFGRD96 24.0 340 80 25 4.19 0.1491
WVFGRD96 26.0 340 75 25 4.19 0.1343
WVFGRD96 28.0 340 75 25 4.19 0.1208
WVFGRD96 30.0 340 75 25 4.19 0.1086
WVFGRD96 32.0 340 70 25 4.19 0.0973
WVFGRD96 34.0 340 70 25 4.19 0.0890
WVFGRD96 36.0 340 75 30 4.21 0.0857
WVFGRD96 38.0 340 75 30 4.24 0.0843
WVFGRD96 40.0 345 70 40 4.31 0.0855
WVFGRD96 42.0 345 70 40 4.34 0.0844
WVFGRD96 44.0 345 75 35 4.35 0.0825
WVFGRD96 46.0 240 55 -5 4.37 0.0824
WVFGRD96 48.0 240 55 -5 4.39 0.0847
WVFGRD96 50.0 240 55 -5 4.40 0.0873
WVFGRD96 52.0 240 55 -5 4.42 0.0902
WVFGRD96 54.0 240 55 -10 4.44 0.0932
WVFGRD96 56.0 235 55 -15 4.45 0.0965
WVFGRD96 58.0 240 60 -10 4.45 0.1005
WVFGRD96 60.0 240 60 -5 4.46 0.1056
WVFGRD96 62.0 240 60 -5 4.48 0.1124
WVFGRD96 64.0 240 60 -10 4.50 0.1212
WVFGRD96 66.0 240 60 -10 4.51 0.1313
WVFGRD96 68.0 240 65 -10 4.52 0.1414
WVFGRD96 70.0 240 65 -10 4.53 0.1504
WVFGRD96 72.0 245 70 -10 4.54 0.1590
WVFGRD96 74.0 245 70 -15 4.56 0.1759
WVFGRD96 76.0 245 75 -15 4.58 0.2021
WVFGRD96 78.0 250 80 -15 4.60 0.2342
WVFGRD96 80.0 70 90 20 4.62 0.2690
WVFGRD96 82.0 70 85 25 4.64 0.3081
WVFGRD96 84.0 75 80 30 4.67 0.3483
WVFGRD96 86.0 70 80 30 4.68 0.3882
WVFGRD96 88.0 70 80 30 4.70 0.4273
WVFGRD96 90.0 75 75 30 4.72 0.4664
WVFGRD96 92.0 75 75 35 4.74 0.5011
WVFGRD96 94.0 75 75 35 4.75 0.5252
WVFGRD96 96.0 75 75 35 4.75 0.5370
WVFGRD96 98.0 75 75 35 4.76 0.5407
WVFGRD96 100.0 75 75 35 4.76 0.5427
WVFGRD96 102.0 75 75 35 4.76 0.5449
WVFGRD96 104.0 75 75 35 4.77 0.5465
WVFGRD96 106.0 75 75 30 4.77 0.5476
WVFGRD96 108.0 75 75 30 4.77 0.5507
WVFGRD96 110.0 75 75 30 4.77 0.5528
WVFGRD96 112.0 75 75 30 4.78 0.5544
WVFGRD96 114.0 75 75 30 4.78 0.5562
WVFGRD96 116.0 75 75 30 4.78 0.5569
WVFGRD96 118.0 75 75 25 4.78 0.5581
WVFGRD96 120.0 75 75 25 4.78 0.5585
WVFGRD96 122.0 75 75 25 4.79 0.5609
WVFGRD96 124.0 75 75 25 4.79 0.5625
WVFGRD96 126.0 75 75 25 4.79 0.5648
WVFGRD96 128.0 75 75 25 4.79 0.5653
WVFGRD96 130.0 75 75 25 4.80 0.5655
WVFGRD96 132.0 75 75 25 4.80 0.5652
WVFGRD96 134.0 75 75 25 4.80 0.5667
WVFGRD96 136.0 75 75 25 4.80 0.5665
WVFGRD96 138.0 75 75 25 4.81 0.5661
WVFGRD96 140.0 75 75 25 4.81 0.5637
WVFGRD96 142.0 75 75 25 4.81 0.5643
WVFGRD96 144.0 75 75 25 4.81 0.5632
WVFGRD96 146.0 75 75 25 4.81 0.5616
WVFGRD96 148.0 75 75 25 4.82 0.5588
WVFGRD96 150.0 75 75 25 4.82 0.5581
WVFGRD96 152.0 75 75 25 4.82 0.5556
WVFGRD96 154.0 75 75 25 4.82 0.5518
WVFGRD96 156.0 75 75 25 4.82 0.5504
WVFGRD96 158.0 75 75 25 4.82 0.5477
The best solution is
WVFGRD96 134.0 75 75 25 4.80 0.5667
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00