Location

Location ANSS

The ANSS event ID is us2000apcc and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us2000apcc/executive.

2017/09/16 23:38:03 59.866 -136.794 6.5 5 Yukon, Canada

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2017/09/16 23:38:03:0  59.87 -136.79   6.5 5.0 Yukon, Canada
 
 Stations used:
   AK.BARN AK.BCP AK.BERG AK.BESE AK.CRQ AK.CTG AK.GLB AK.GRNC 
   AK.LOGN AK.MCAR AK.MESA AK.PIN AK.SSP AK.TGL AK.VRDI AK.YAH 
   AT.SIT AT.SKAG AT.YKU2 CN.DLBC CN.HYT CN.WHY NY.FARO 
   NY.MAYO NY.MMPY NY.WTLY TA.K29M TA.L27K TA.M26K TA.M27K 
   TA.M29M TA.M30M TA.M31M TA.N30M TA.N31M TA.O29M TA.O30N 
   TA.P29M TA.P32M TA.P33M TA.Q32M TA.R33M TA.S31K TA.S32K 
   TA.S34M TA.T33K 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 4.57e+23 dyne-cm
  Mw = 5.04 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      115    60    55
   NP2      349    45   135
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.57e+23     59     333
    N   0.00e+00     30     134
    P  -4.57e+23      9     229

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -9.24e+22
       Mxy    -2.70e+23
       Mxz     2.25e+23
       Myy    -2.32e+23
       Myz    -3.97e+22
       Mzz     3.24e+23
                                                     
                                                     
                                                     
                                                     
                     ######--------                  
                 #############---------              
              ##################----------           
             #####################---------          
           ########################----------        
          ##########################----------       
         ##############   ###########----------      
        --############# T ############----------     
        ---############   ############----------     
       -----###########################----------    
       -------#########################----------    
       ---------#######################----------    
       -----------######################---------    
        -------------###################--------     
        ----------------###############---------     
         -------------------###########--------      
          --   ----------------------##--#####       
           - P -----------------------#######        
               ----------------------######          
              ----------------------######           
                 ------------------####              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.24e+23   2.25e+23   3.97e+22 
  2.25e+23  -9.24e+22   2.70e+23 
  3.97e+22   2.70e+23  -2.32e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170916233803/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 115
      DIP = 60
     RAKE = 55
       MW = 5.04
       HS = 10.0

The NDK file is 20170916233803.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2017/09/16 23:38:03:0  59.87 -136.79   6.5 5.0 Yukon, Canada
 
 Stations used:
   AK.BARN AK.BCP AK.BERG AK.BESE AK.CRQ AK.CTG AK.GLB AK.GRNC 
   AK.LOGN AK.MCAR AK.MESA AK.PIN AK.SSP AK.TGL AK.VRDI AK.YAH 
   AT.SIT AT.SKAG AT.YKU2 CN.DLBC CN.HYT CN.WHY NY.FARO 
   NY.MAYO NY.MMPY NY.WTLY TA.K29M TA.L27K TA.M26K TA.M27K 
   TA.M29M TA.M30M TA.M31M TA.N30M TA.N31M TA.O29M TA.O30N 
   TA.P29M TA.P32M TA.P33M TA.Q32M TA.R33M TA.S31K TA.S32K 
   TA.S34M TA.T33K 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 4.57e+23 dyne-cm
  Mw = 5.04 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      115    60    55
   NP2      349    45   135
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.57e+23     59     333
    N   0.00e+00     30     134
    P  -4.57e+23      9     229

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -9.24e+22
       Mxy    -2.70e+23
       Mxz     2.25e+23
       Myy    -2.32e+23
       Myz    -3.97e+22
       Mzz     3.24e+23
                                                     
                                                     
                                                     
                                                     
                     ######--------                  
                 #############---------              
              ##################----------           
             #####################---------          
           ########################----------        
          ##########################----------       
         ##############   ###########----------      
        --############# T ############----------     
        ---############   ############----------     
       -----###########################----------    
       -------#########################----------    
       ---------#######################----------    
       -----------######################---------    
        -------------###################--------     
        ----------------###############---------     
         -------------------###########--------      
          --   ----------------------##--#####       
           - P -----------------------#######        
               ----------------------######          
              ----------------------######           
                 ------------------####              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.24e+23   2.25e+23   3.97e+22 
  2.25e+23  -9.24e+22   2.70e+23 
  3.97e+22   2.70e+23  -2.32e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170916233803/index.html
	
Regional Moment Tensor (Mwr)
Moment	4.649e+16 N-m
Magnitude	5.0 Mwr
Depth	10.0 km
Percent DC	75 %
Half Duration	–
Catalog	US
Data Source	US3
Contributor	US3
Nodal Planes
Plane	Strike	Dip	Rake
NP1	336	42	109
NP2	131	51	74
Principal Axes
Axis	Value	Plunge	Azimuth
T	4.305e+16 N-m	77	341
N	0.624e+16 N-m	12	142
P	-4.929e+16 N-m	4	233

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   280    55    10   4.88 0.4081
WVFGRD96    2.0   280    90   -50   4.95 0.4123
WVFGRD96    3.0   280    90   -50   4.95 0.4304
WVFGRD96    4.0   105    75    50   4.96 0.4537
WVFGRD96    5.0   125    60    70   5.01 0.4928
WVFGRD96    6.0   130    55    75   5.02 0.5222
WVFGRD96    7.0   120    60    60   5.00 0.5374
WVFGRD96    8.0   120    60    60   5.01 0.5439
WVFGRD96    9.0   115    60    55   5.01 0.5433
WVFGRD96   10.0   115    60    55   5.04 0.5485
WVFGRD96   11.0   115    60    50   5.04 0.5410
WVFGRD96   12.0   110    65    45   5.04 0.5326
WVFGRD96   13.0   110    65    45   5.04 0.5209
WVFGRD96   14.0   105    65    35   5.04 0.5079
WVFGRD96   15.0   105    65    35   5.05 0.4947
WVFGRD96   16.0   105    65    35   5.05 0.4802
WVFGRD96   17.0   105    65    35   5.06 0.4651
WVFGRD96   18.0   105    65    35   5.06 0.4488
WVFGRD96   19.0   105    65    35   5.07 0.4329
WVFGRD96   20.0   105    60    35   5.09 0.4187
WVFGRD96   21.0   100    65    30   5.09 0.4042
WVFGRD96   22.0   100    65    30   5.10 0.3902
WVFGRD96   23.0   100    65    30   5.10 0.3762
WVFGRD96   24.0   100    65    30   5.10 0.3624
WVFGRD96   25.0   100    65    30   5.11 0.3491
WVFGRD96   26.0   100    60    25   5.11 0.3369
WVFGRD96   27.0   100    60    25   5.11 0.3253
WVFGRD96   28.0   100    60    25   5.11 0.3142
WVFGRD96   29.0   100    60    25   5.11 0.3034

The best solution is

WVFGRD96   10.0   115    60    55   5.04 0.5485

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Sat Apr 27 07:21:30 PM CDT 2024