The ANSS event ID is ak017b7l1ix4 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak017b7l1ix4/executive.
2017/09/01 03:21:20 63.040 -150.969 132.0 4 Alaska
USGS/SLU Moment Tensor Solution ENS 2017/09/01 03:21:20:0 63.04 -150.97 132.0 4.0 Alaska Stations used: AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.GHO AK.GLI AK.HDA AK.KNK AK.KTH AK.MDM AK.MLY AK.NEA2 AK.PPD AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SCRK AK.SSN AK.TRF AK.WRH AT.PMR AT.TTA IM.IL31 IU.COLA TA.H21K TA.J20K TA.J25K TA.J26L TA.K20K TA.L26K TA.M19K TA.M20K TA.M22K TA.N19K TA.N25K TA.O22K TA.POKR TA.TCOL Filtering commands used: cut o DIST/3.3 -60 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.88e+22 dyne-cm Mw = 4.24 Z = 136 km Plane Strike Dip Rake NP1 60 80 45 NP2 320 46 166 Principal Axes: Axis Value Plunge Azimuth T 2.88e+22 38 291 N 0.00e+00 44 70 P -2.88e+22 22 183 Moment Tensor: (dyne-cm) Component Value Mxx -2.26e+22 Mxy -7.02e+21 Mxz 1.48e+22 Myy 1.56e+22 Myz -1.26e+22 Mzz 6.97e+21 -------------- ---------------------- #########------------------- ###############--------------- ####################-------------- #######################------------- ##########################---------### ###### ####################-----###### ###### T #####################--######## ####### ####################--########## ###########################------######### ########################----------######## #####################--------------####### #################-----------------###### #############----------------------##### ########--------------------------#### #--------------------------------### -------------------------------### ------------- -------------# ------------ P ------------# --------- ---------- -------------- Global CMT Convention Moment Tensor: R T P 6.97e+21 1.48e+22 1.26e+22 1.48e+22 -2.26e+22 7.02e+21 1.26e+22 7.02e+21 1.56e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170901032120/index.html |
STK = 60 DIP = 80 RAKE = 45 MW = 4.24 HS = 136.0
The NDK file is 20170901032120.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -60 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 135 45 -45 3.29 0.1476 WVFGRD96 4.0 155 55 -10 3.32 0.1572 WVFGRD96 6.0 160 65 15 3.37 0.1709 WVFGRD96 8.0 160 65 15 3.45 0.1825 WVFGRD96 10.0 160 65 20 3.50 0.1899 WVFGRD96 12.0 160 65 25 3.54 0.1954 WVFGRD96 14.0 160 70 25 3.58 0.1980 WVFGRD96 16.0 160 65 25 3.60 0.1950 WVFGRD96 18.0 160 65 30 3.62 0.1884 WVFGRD96 20.0 160 65 35 3.64 0.1793 WVFGRD96 22.0 160 70 35 3.66 0.1692 WVFGRD96 24.0 250 70 30 3.66 0.1723 WVFGRD96 26.0 245 80 25 3.69 0.1762 WVFGRD96 28.0 245 80 25 3.70 0.1786 WVFGRD96 30.0 245 80 25 3.72 0.1802 WVFGRD96 32.0 245 80 25 3.74 0.1796 WVFGRD96 34.0 245 85 20 3.75 0.1776 WVFGRD96 36.0 70 80 15 3.78 0.1773 WVFGRD96 38.0 75 75 20 3.81 0.1754 WVFGRD96 40.0 250 90 -20 3.85 0.1741 WVFGRD96 42.0 75 75 20 3.89 0.1768 WVFGRD96 44.0 75 75 20 3.92 0.1780 WVFGRD96 46.0 75 75 20 3.94 0.1804 WVFGRD96 48.0 80 70 30 3.96 0.1844 WVFGRD96 50.0 80 70 30 3.98 0.1899 WVFGRD96 52.0 80 70 30 3.99 0.1960 WVFGRD96 54.0 80 70 30 4.00 0.2024 WVFGRD96 56.0 80 70 30 4.01 0.2087 WVFGRD96 58.0 60 75 -25 4.05 0.2171 WVFGRD96 60.0 60 75 -20 4.06 0.2298 WVFGRD96 62.0 60 75 -20 4.07 0.2432 WVFGRD96 64.0 60 75 -20 4.09 0.2560 WVFGRD96 66.0 60 75 -20 4.10 0.2679 WVFGRD96 68.0 55 75 -25 4.12 0.2847 WVFGRD96 70.0 55 75 -25 4.14 0.3013 WVFGRD96 72.0 55 75 -20 4.15 0.3242 WVFGRD96 74.0 55 75 -15 4.16 0.3627 WVFGRD96 76.0 60 65 20 4.13 0.4235 WVFGRD96 78.0 60 65 20 4.16 0.4934 WVFGRD96 80.0 60 70 25 4.17 0.5557 WVFGRD96 82.0 60 70 25 4.18 0.6036 WVFGRD96 84.0 60 70 30 4.18 0.6311 WVFGRD96 86.0 60 70 30 4.19 0.6390 WVFGRD96 88.0 60 75 30 4.19 0.6447 WVFGRD96 90.0 60 75 30 4.19 0.6484 WVFGRD96 92.0 60 75 35 4.19 0.6547 WVFGRD96 94.0 60 75 35 4.19 0.6593 WVFGRD96 96.0 60 75 35 4.20 0.6653 WVFGRD96 98.0 60 75 40 4.20 0.6699 WVFGRD96 100.0 60 75 40 4.20 0.6754 WVFGRD96 102.0 60 75 40 4.20 0.6809 WVFGRD96 104.0 60 75 40 4.20 0.6834 WVFGRD96 106.0 60 75 40 4.21 0.6889 WVFGRD96 108.0 60 75 40 4.21 0.6902 WVFGRD96 110.0 60 75 40 4.21 0.6950 WVFGRD96 112.0 60 75 40 4.21 0.6965 WVFGRD96 114.0 60 75 40 4.22 0.7010 WVFGRD96 116.0 60 75 40 4.22 0.7018 WVFGRD96 118.0 60 80 45 4.22 0.7060 WVFGRD96 120.0 60 80 45 4.23 0.7060 WVFGRD96 122.0 60 80 45 4.23 0.7098 WVFGRD96 124.0 60 80 45 4.23 0.7094 WVFGRD96 126.0 60 80 45 4.23 0.7135 WVFGRD96 128.0 60 80 45 4.23 0.7139 WVFGRD96 130.0 60 80 45 4.24 0.7152 WVFGRD96 132.0 60 80 45 4.24 0.7152 WVFGRD96 134.0 60 80 45 4.24 0.7156 WVFGRD96 136.0 60 80 45 4.24 0.7166 WVFGRD96 138.0 60 80 45 4.24 0.7148 WVFGRD96 140.0 60 80 45 4.24 0.7149 WVFGRD96 142.0 60 80 45 4.25 0.7137 WVFGRD96 144.0 60 80 45 4.25 0.7133 WVFGRD96 146.0 60 80 45 4.25 0.7115 WVFGRD96 148.0 60 80 45 4.25 0.7084
The best solution is
WVFGRD96 136.0 60 80 45 4.24 0.7166
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -60 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00