The ANSS event ID is ak01795hw4di and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak01795hw4di/executive.
2017/07/18 23:42:39 60.270 -150.953 64.8 3.8 Alaska
USGS/SLU Moment Tensor Solution
ENS 2017/07/18 23:42:39:0 60.27 -150.95 64.8 3.8 Alaska
Stations used:
AK.CNP AK.GHO AK.GLI AK.KNK AK.PWL AK.RC01 AK.SSN AK.SWD
AT.PMR TA.M22K TA.N19K TA.O22K TA.P19K
Filtering commands used:
cut o DIST/3.4 -30 o DIST/3.4 +40
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 6.10e+21 dyne-cm
Mw = 3.79
Z = 64 km
Plane Strike Dip Rake
NP1 320 87 94
NP2 90 5 40
Principal Axes:
Axis Value Plunge Azimuth
T 6.10e+21 48 234
N 0.00e+00 4 140
P -6.10e+21 42 46
Moment Tensor: (dyne-cm)
Component Value
Mxx -6.80e+20
Mxy -4.07e+20
Mxz -3.86e+21
Myy -3.56e+13
Myz -4.65e+21
Mzz 6.80e+20
--------------
----------------------
#---------------------------
####--------------------------
########--------------------------
##########--------------- --------
#############------------- P ---------
################----------- ----------
#################-----------------------
####################----------------------
#####################---------------------
#######################-------------------
-#######################-----------------#
########## ############---------------
-######### T #############-------------#
######### ###############-----------
###########################---------
-###########################-----#
###########################---
--########################-#
--##################--
---########---
Global CMT Convention Moment Tensor:
R T P
6.80e+20 -3.86e+21 4.65e+21
-3.86e+21 -6.80e+20 4.07e+20
4.65e+21 4.07e+20 -3.56e+13
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170718234239/index.html
|
STK = 90
DIP = 5
RAKE = 40
MW = 3.79
HS = 64.0
The NDK file is 20170718234239.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2017/07/18 23:42:39:0 60.27 -150.95 64.8 3.8 Alaska
Stations used:
AK.CNP AK.GHO AK.GLI AK.KNK AK.PWL AK.RC01 AK.SSN AK.SWD
AT.PMR TA.M22K TA.N19K TA.O22K TA.P19K
Filtering commands used:
cut o DIST/3.4 -30 o DIST/3.4 +40
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 6.10e+21 dyne-cm
Mw = 3.79
Z = 64 km
Plane Strike Dip Rake
NP1 320 87 94
NP2 90 5 40
Principal Axes:
Axis Value Plunge Azimuth
T 6.10e+21 48 234
N 0.00e+00 4 140
P -6.10e+21 42 46
Moment Tensor: (dyne-cm)
Component Value
Mxx -6.80e+20
Mxy -4.07e+20
Mxz -3.86e+21
Myy -3.56e+13
Myz -4.65e+21
Mzz 6.80e+20
--------------
----------------------
#---------------------------
####--------------------------
########--------------------------
##########--------------- --------
#############------------- P ---------
################----------- ----------
#################-----------------------
####################----------------------
#####################---------------------
#######################-------------------
-#######################-----------------#
########## ############---------------
-######### T #############-------------#
######### ###############-----------
###########################---------
-###########################-----#
###########################---
--########################-#
--##################--
---########---
Global CMT Convention Moment Tensor:
R T P
6.80e+20 -3.86e+21 4.65e+21
-3.86e+21 -6.80e+20 4.07e+20
4.65e+21 4.07e+20 -3.56e+13
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170718234239/index.html
|
Regional Moment Tensor (Mwr) Moment 6.810e+14 N-m Magnitude 3.8 Mwr Depth 63.0 km Percent DC 67 % Half Duration – Catalog US Data Source US2 Contributor US2 Nodal Planes Plane Strike Dip Rake NP1 307 84 74 NP2 198 17 160 Principal Axes Axis Value Plunge Azimuth T 7.338e+14 N-m 48 201 N -1.222e+14 N-m 16 309 P -6.116e+14 N-m 37 51 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -30 o DIST/3.4 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 2.0 325 40 -90 3.02 0.2553
WVFGRD96 4.0 225 40 -5 3.08 0.2241
WVFGRD96 6.0 220 35 -20 3.08 0.2854
WVFGRD96 8.0 195 25 -45 3.16 0.3219
WVFGRD96 10.0 190 25 -50 3.18 0.3439
WVFGRD96 12.0 220 45 -5 3.25 0.3538
WVFGRD96 14.0 135 70 60 3.24 0.3627
WVFGRD96 16.0 135 70 50 3.29 0.3697
WVFGRD96 18.0 45 60 10 3.38 0.3737
WVFGRD96 20.0 45 60 5 3.40 0.3757
WVFGRD96 22.0 45 60 5 3.43 0.3735
WVFGRD96 24.0 45 60 5 3.45 0.3675
WVFGRD96 26.0 45 55 0 3.45 0.3602
WVFGRD96 28.0 45 50 0 3.46 0.3567
WVFGRD96 30.0 45 50 0 3.48 0.3528
WVFGRD96 32.0 30 30 -25 3.46 0.3570
WVFGRD96 34.0 20 20 -30 3.47 0.3755
WVFGRD96 36.0 20 20 -30 3.49 0.3967
WVFGRD96 38.0 10 15 -45 3.50 0.4212
WVFGRD96 40.0 350 10 -65 3.66 0.4431
WVFGRD96 42.0 140 90 -80 3.67 0.4979
WVFGRD96 44.0 75 5 20 3.68 0.5450
WVFGRD96 46.0 85 5 30 3.69 0.5882
WVFGRD96 48.0 100 5 50 3.70 0.6230
WVFGRD96 50.0 100 5 50 3.71 0.6504
WVFGRD96 52.0 100 5 50 3.73 0.6705
WVFGRD96 54.0 100 5 50 3.74 0.6855
WVFGRD96 56.0 100 5 50 3.75 0.6979
WVFGRD96 58.0 100 5 50 3.76 0.7063
WVFGRD96 60.0 100 5 50 3.77 0.7098
WVFGRD96 62.0 100 5 50 3.78 0.7115
WVFGRD96 64.0 90 5 40 3.79 0.7117
WVFGRD96 66.0 155 5 110 3.80 0.7115
WVFGRD96 68.0 355 -5 -50 3.81 0.7097
WVFGRD96 70.0 315 85 85 3.81 0.7037
WVFGRD96 72.0 135 90 -85 3.84 0.6863
WVFGRD96 74.0 135 90 -80 3.84 0.6777
WVFGRD96 76.0 130 90 -80 3.85 0.6663
WVFGRD96 78.0 130 90 -80 3.86 0.6545
WVFGRD96 80.0 125 90 -75 3.87 0.6403
WVFGRD96 82.0 125 90 -75 3.88 0.6264
WVFGRD96 84.0 140 5 100 3.87 0.6133
WVFGRD96 86.0 305 85 75 3.88 0.6097
WVFGRD96 88.0 305 85 75 3.88 0.5921
WVFGRD96 90.0 300 80 80 3.88 0.5810
WVFGRD96 92.0 300 80 80 3.88 0.5704
WVFGRD96 94.0 300 80 80 3.89 0.5580
WVFGRD96 96.0 300 80 80 3.89 0.5459
WVFGRD96 98.0 300 80 75 3.89 0.5321
The best solution is
WVFGRD96 64.0 90 5 40 3.79 0.7117
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -30 o DIST/3.4 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00