The ANSS event ID is ak0178yhumx4 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0178yhumx4/executive.
2017/07/14 00:09:15 63.078 -150.663 118.2 4 Alaska
USGS/SLU Moment Tensor Solution ENS 2017/07/14 00:09:15:0 63.08 -150.66 118.2 4.0 Alaska Stations used: AK.BPAW AK.BWN AK.CAST AK.DHY AK.GHO AK.GLI AK.KLU AK.KNK AK.KTH AK.MDM AK.MLY AK.NEA2 AK.PAX AK.RC01 AK.SAW AK.SCM AK.TRF AT.PMR IU.COLA TA.H21K TA.H23K TA.I21K TA.I23K TA.J20K TA.J25K TA.K20K TA.L19K TA.M20K TA.M22K TA.POKR TA.TCOL Filtering commands used: cut o DIST/3.4 -50 o DIST/3.4 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.30e+22 dyne-cm Mw = 4.01 Z = 122 km Plane Strike Dip Rake NP1 234 87 -125 NP2 140 35 -5 Principal Axes: Axis Value Plunge Azimuth T 1.30e+22 33 353 N 0.00e+00 35 236 P -1.30e+22 38 113 Moment Tensor: (dyne-cm) Component Value Mxx 7.77e+21 Mxy 1.82e+21 Mxz 8.40e+21 Myy -6.71e+21 Myz -6.54e+21 Mzz -1.07e+21 ############## ###################### -########## ############## -########### T ############### --############ ################# --##############################---- ---###########################-------- ----########################------------ ----#####################--------------- -----###################------------------ ------###############--------------------- ------############------------------------ -------#########--------------- -------- -------######----------------- P ------- --------##-------------------- ------- -------#------------------------------ ----#####--------------------------- ##########------------------------ ###########------------------- #############--------------- ###################### ############## Global CMT Convention Moment Tensor: R T P -1.07e+21 8.40e+21 6.54e+21 8.40e+21 7.77e+21 -1.82e+21 6.54e+21 -1.82e+21 -6.71e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170714000915/index.html |
STK = 140 DIP = 35 RAKE = -5 MW = 4.01 HS = 122.0
The NDK file is 20170714000915.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -50 o DIST/3.4 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 235 70 -30 2.94 0.1222 WVFGRD96 4.0 250 65 30 3.03 0.1419 WVFGRD96 6.0 250 70 30 3.08 0.1554 WVFGRD96 8.0 255 65 30 3.17 0.1685 WVFGRD96 10.0 250 75 30 3.20 0.1723 WVFGRD96 12.0 60 90 -30 3.23 0.1739 WVFGRD96 14.0 60 90 -30 3.26 0.1737 WVFGRD96 16.0 60 90 -30 3.28 0.1702 WVFGRD96 18.0 60 90 -30 3.31 0.1646 WVFGRD96 20.0 60 90 -30 3.32 0.1566 WVFGRD96 22.0 55 65 -20 3.36 0.1476 WVFGRD96 24.0 95 45 -5 3.43 0.1434 WVFGRD96 26.0 95 45 -5 3.45 0.1444 WVFGRD96 28.0 95 45 -10 3.48 0.1453 WVFGRD96 30.0 95 45 -10 3.50 0.1472 WVFGRD96 32.0 95 50 -15 3.52 0.1520 WVFGRD96 34.0 100 60 -25 3.51 0.1584 WVFGRD96 36.0 100 60 -25 3.54 0.1666 WVFGRD96 38.0 105 60 -25 3.57 0.1749 WVFGRD96 40.0 105 60 -35 3.63 0.1740 WVFGRD96 42.0 135 45 35 3.71 0.1729 WVFGRD96 44.0 135 50 30 3.73 0.1844 WVFGRD96 46.0 135 50 30 3.76 0.2004 WVFGRD96 48.0 135 50 30 3.79 0.2197 WVFGRD96 50.0 135 50 25 3.81 0.2430 WVFGRD96 52.0 135 50 25 3.84 0.2695 WVFGRD96 54.0 140 55 25 3.85 0.2980 WVFGRD96 56.0 145 55 25 3.86 0.3266 WVFGRD96 58.0 145 60 25 3.88 0.3564 WVFGRD96 60.0 145 60 20 3.89 0.3809 WVFGRD96 62.0 145 60 20 3.90 0.3966 WVFGRD96 64.0 150 40 10 3.87 0.4218 WVFGRD96 66.0 150 40 10 3.88 0.4501 WVFGRD96 68.0 150 35 5 3.88 0.4756 WVFGRD96 70.0 150 35 5 3.89 0.4928 WVFGRD96 72.0 150 35 5 3.90 0.5016 WVFGRD96 74.0 150 40 5 3.91 0.5107 WVFGRD96 76.0 150 40 5 3.92 0.5204 WVFGRD96 78.0 140 35 0 3.93 0.5303 WVFGRD96 80.0 140 35 0 3.94 0.5396 WVFGRD96 82.0 140 35 0 3.94 0.5474 WVFGRD96 84.0 140 35 0 3.95 0.5564 WVFGRD96 86.0 135 35 -5 3.95 0.5641 WVFGRD96 88.0 135 35 -5 3.96 0.5732 WVFGRD96 90.0 140 40 0 3.96 0.5813 WVFGRD96 92.0 140 40 0 3.97 0.5889 WVFGRD96 94.0 140 40 0 3.97 0.5975 WVFGRD96 96.0 140 40 0 3.98 0.6025 WVFGRD96 98.0 140 40 0 3.98 0.6109 WVFGRD96 100.0 140 35 -5 3.98 0.6156 WVFGRD96 102.0 140 35 -5 3.98 0.6217 WVFGRD96 104.0 140 35 -5 3.98 0.6268 WVFGRD96 106.0 140 35 -5 3.99 0.6317 WVFGRD96 108.0 140 35 -5 3.99 0.6352 WVFGRD96 110.0 140 35 -5 3.99 0.6381 WVFGRD96 112.0 140 35 -5 4.00 0.6415 WVFGRD96 114.0 140 35 -5 4.00 0.6429 WVFGRD96 116.0 140 35 -5 4.00 0.6438 WVFGRD96 118.0 140 35 -5 4.00 0.6456 WVFGRD96 120.0 140 35 -5 4.01 0.6448 WVFGRD96 122.0 140 35 -5 4.01 0.6461 WVFGRD96 124.0 135 30 -10 4.02 0.6435 WVFGRD96 126.0 135 30 -10 4.02 0.6438 WVFGRD96 128.0 135 30 -10 4.02 0.6421
The best solution is
WVFGRD96 122.0 140 35 -5 4.01 0.6461
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -50 o DIST/3.4 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00