The ANSS event ID is ak0178d9n54j and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0178d9n54j/executive.
2017/07/01 16:51:51 62.225 -151.372 86.8 4 Alaska
USGS/SLU Moment Tensor Solution ENS 2017/07/01 16:51:51:0 62.22 -151.37 86.8 4.0 Alaska Stations used: AK.BPAW AK.BWN AK.CAST AK.DHY AK.GHO AK.KNK AK.KTH AK.MLY AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SSN AK.TRF AT.PMR AV.ILSW TA.J20K TA.K20K TA.L19K TA.M22K Filtering commands used: cut o DIST/3.5 -30 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.06e+22 dyne-cm Mw = 3.95 Z = 96 km Plane Strike Dip Rake NP1 255 60 -40 NP2 8 56 -143 Principal Axes: Axis Value Plunge Azimuth T 1.06e+22 2 312 N 0.00e+00 42 44 P -1.06e+22 48 220 Moment Tensor: (dyne-cm) Component Value Mxx 1.99e+21 Mxy -7.56e+21 Mxz 4.34e+21 Myy 3.91e+21 Myz 3.04e+21 Mzz -5.90e+21 ###########--- ################------ ###################-------- T ####################-------- # #####################--------- ##########################---------- ######################-----####------- ###############--------------#########-- ###########------------------########### #########---------------------############ ######------------------------############ ####-------------------------############# ###--------------------------############# ----------------------------############ ------------ ------------############# ----------- P ------------############ ---------- -----------############ ----------------------############ -------------------########### -----------------########### ------------########## ------######## Global CMT Convention Moment Tensor: R T P -5.90e+21 4.34e+21 -3.04e+21 4.34e+21 1.99e+21 7.56e+21 -3.04e+21 7.56e+21 3.91e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170701165151/index.html |
STK = 255 DIP = 60 RAKE = -40 MW = 3.95 HS = 96.0
The NDK file is 20170701165151.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -30 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 220 50 70 3.15 0.2681 WVFGRD96 4.0 185 75 -40 3.17 0.2351 WVFGRD96 6.0 -5 50 -30 3.24 0.2734 WVFGRD96 8.0 355 50 -30 3.33 0.3002 WVFGRD96 10.0 -5 55 -35 3.37 0.3160 WVFGRD96 12.0 0 60 -30 3.39 0.3172 WVFGRD96 14.0 0 60 -30 3.42 0.3079 WVFGRD96 16.0 0 60 -30 3.45 0.2909 WVFGRD96 18.0 315 50 -10 3.44 0.2792 WVFGRD96 20.0 110 55 25 3.50 0.2876 WVFGRD96 22.0 105 60 10 3.52 0.2946 WVFGRD96 24.0 105 65 15 3.55 0.3007 WVFGRD96 26.0 105 65 15 3.57 0.3049 WVFGRD96 28.0 105 65 20 3.60 0.3163 WVFGRD96 30.0 105 65 15 3.62 0.3322 WVFGRD96 32.0 105 60 10 3.63 0.3474 WVFGRD96 34.0 105 60 10 3.65 0.3586 WVFGRD96 36.0 105 60 5 3.67 0.3658 WVFGRD96 38.0 105 65 15 3.70 0.3704 WVFGRD96 40.0 100 55 -10 3.76 0.3816 WVFGRD96 42.0 100 50 -10 3.79 0.3824 WVFGRD96 44.0 100 55 -10 3.81 0.3785 WVFGRD96 46.0 280 60 0 3.84 0.3831 WVFGRD96 48.0 280 60 0 3.86 0.3948 WVFGRD96 50.0 275 55 -10 3.87 0.4080 WVFGRD96 52.0 270 55 -20 3.88 0.4274 WVFGRD96 54.0 270 55 -25 3.88 0.4488 WVFGRD96 56.0 270 55 -25 3.89 0.4695 WVFGRD96 58.0 270 55 -25 3.90 0.4886 WVFGRD96 60.0 265 55 -30 3.91 0.5058 WVFGRD96 62.0 265 55 -30 3.91 0.5220 WVFGRD96 64.0 265 55 -30 3.92 0.5362 WVFGRD96 66.0 265 55 -30 3.92 0.5489 WVFGRD96 68.0 265 55 -30 3.92 0.5585 WVFGRD96 70.0 260 55 -35 3.93 0.5663 WVFGRD96 72.0 260 55 -35 3.93 0.5741 WVFGRD96 74.0 260 55 -35 3.93 0.5791 WVFGRD96 76.0 260 55 -35 3.93 0.5836 WVFGRD96 78.0 260 55 -35 3.93 0.5865 WVFGRD96 80.0 260 55 -35 3.93 0.5889 WVFGRD96 82.0 260 60 -35 3.94 0.5904 WVFGRD96 84.0 260 60 -35 3.94 0.5929 WVFGRD96 86.0 260 60 -35 3.94 0.5943 WVFGRD96 88.0 260 60 -35 3.94 0.5955 WVFGRD96 90.0 260 60 -35 3.94 0.5962 WVFGRD96 92.0 255 60 -40 3.95 0.5960 WVFGRD96 94.0 255 60 -40 3.95 0.5969 WVFGRD96 96.0 255 60 -40 3.95 0.5975 WVFGRD96 98.0 255 60 -40 3.95 0.5968 WVFGRD96 100.0 255 60 -40 3.95 0.5959 WVFGRD96 102.0 255 60 -40 3.95 0.5950 WVFGRD96 104.0 255 60 -40 3.95 0.5946 WVFGRD96 106.0 255 65 -40 3.97 0.5932 WVFGRD96 108.0 255 65 -40 3.97 0.5906 WVFGRD96 110.0 255 65 -40 3.97 0.5896 WVFGRD96 112.0 255 65 -40 3.97 0.5889 WVFGRD96 114.0 255 65 -40 3.97 0.5862 WVFGRD96 116.0 255 65 -40 3.97 0.5840 WVFGRD96 118.0 255 65 -40 3.97 0.5824
The best solution is
WVFGRD96 96.0 255 60 -40 3.95 0.5975
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -30 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00