The ANSS event ID is ak0177q3cz5d and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0177q3cz5d/executive.
2017/06/17 15:24:10 62.465 -149.089 39.4 3.7 Alaska
USGS/SLU Moment Tensor Solution ENS 2017/06/17 15:24:10:0 62.47 -149.09 39.4 3.7 Alaska Stations used: AK.BWN AK.CUT AK.DHY AK.GLI AK.KLU AK.KNK AK.MCK AK.RC01 AK.RND AK.SAW AK.SCM AT.PMR TA.K20K TA.M22K TA.M24K Filtering commands used: cut o DIST/3.5 -30 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.12 n 3 Best Fitting Double Couple Mo = 4.79e+21 dyne-cm Mw = 3.72 Z = 60 km Plane Strike Dip Rake NP1 305 75 -40 NP2 47 52 -161 Principal Axes: Axis Value Plunge Azimuth T 4.79e+21 15 1 N 0.00e+00 48 108 P -4.79e+21 38 259 Moment Tensor: (dyne-cm) Component Value Mxx 4.36e+21 Mxy -4.89e+20 Mxz 1.64e+21 Myy -2.82e+21 Myz 2.31e+21 Mzz -1.54e+21 ###### ##### ########## T ######### ############# ############ ############################## ################################-- -------##########################--- -------------#####################---- -----------------##################----- --------------------##############------ ------------------------###########------- --------------------------########-------- ------- ------------------#####--------- ------- P -------------------------------- ------ --------------------##--------- ---------------------------######------- ------------------------##########---- ---------------------#############-- ----------------################## ----------#################### ############################ ###################### ############## Global CMT Convention Moment Tensor: R T P -1.54e+21 1.64e+21 -2.31e+21 1.64e+21 4.36e+21 4.89e+20 -2.31e+21 4.89e+20 -2.82e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170617152410/index.html |
STK = 305 DIP = 75 RAKE = -40 MW = 3.72 HS = 60.0
The NDK file is 20170617152410.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -30 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.12 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 220 80 -5 2.64 0.1362 WVFGRD96 2.0 220 90 -5 2.79 0.1785 WVFGRD96 3.0 50 80 40 2.91 0.1961 WVFGRD96 4.0 50 80 40 2.96 0.2134 WVFGRD96 5.0 30 40 -30 3.04 0.2340 WVFGRD96 6.0 30 40 -30 3.07 0.2515 WVFGRD96 7.0 35 45 -25 3.10 0.2628 WVFGRD96 8.0 30 40 -30 3.17 0.2685 WVFGRD96 9.0 35 40 -25 3.20 0.2715 WVFGRD96 10.0 35 40 -25 3.22 0.2719 WVFGRD96 11.0 35 45 -20 3.24 0.2697 WVFGRD96 12.0 35 45 -20 3.26 0.2662 WVFGRD96 13.0 45 50 10 3.26 0.2620 WVFGRD96 14.0 45 50 10 3.28 0.2586 WVFGRD96 15.0 45 50 10 3.30 0.2539 WVFGRD96 16.0 45 50 10 3.31 0.2482 WVFGRD96 17.0 45 50 10 3.33 0.2405 WVFGRD96 18.0 125 75 -35 3.32 0.2426 WVFGRD96 19.0 125 75 -35 3.34 0.2501 WVFGRD96 20.0 130 80 -35 3.36 0.2596 WVFGRD96 21.0 130 80 -30 3.37 0.2703 WVFGRD96 22.0 315 75 40 3.41 0.2854 WVFGRD96 23.0 315 75 40 3.43 0.3000 WVFGRD96 24.0 315 75 40 3.45 0.3138 WVFGRD96 25.0 315 75 40 3.46 0.3265 WVFGRD96 26.0 315 75 35 3.46 0.3370 WVFGRD96 27.0 320 75 40 3.48 0.3477 WVFGRD96 28.0 315 80 35 3.47 0.3564 WVFGRD96 29.0 315 55 10 3.48 0.3657 WVFGRD96 30.0 315 55 10 3.49 0.3767 WVFGRD96 31.0 310 60 -5 3.48 0.3854 WVFGRD96 32.0 310 55 -5 3.49 0.3949 WVFGRD96 33.0 310 55 -5 3.50 0.4030 WVFGRD96 34.0 310 55 -10 3.51 0.4098 WVFGRD96 35.0 310 55 -10 3.51 0.4138 WVFGRD96 36.0 310 55 -10 3.52 0.4169 WVFGRD96 37.0 310 60 -15 3.52 0.4192 WVFGRD96 38.0 310 60 -15 3.54 0.4234 WVFGRD96 39.0 310 60 -15 3.55 0.4285 WVFGRD96 40.0 305 55 -25 3.61 0.4264 WVFGRD96 41.0 305 50 -20 3.63 0.4294 WVFGRD96 42.0 305 55 -25 3.64 0.4312 WVFGRD96 43.0 305 55 -25 3.65 0.4311 WVFGRD96 44.0 305 55 -25 3.66 0.4305 WVFGRD96 45.0 305 65 -35 3.67 0.4310 WVFGRD96 46.0 305 65 -35 3.67 0.4334 WVFGRD96 47.0 305 65 -35 3.68 0.4353 WVFGRD96 48.0 305 65 -35 3.69 0.4376 WVFGRD96 49.0 305 65 -35 3.69 0.4413 WVFGRD96 50.0 305 65 -35 3.70 0.4443 WVFGRD96 51.0 305 70 -40 3.70 0.4465 WVFGRD96 52.0 305 70 -40 3.71 0.4482 WVFGRD96 53.0 305 70 -40 3.71 0.4505 WVFGRD96 54.0 305 70 -40 3.71 0.4531 WVFGRD96 55.0 305 70 -40 3.71 0.4549 WVFGRD96 56.0 305 70 -40 3.72 0.4546 WVFGRD96 57.0 305 70 -40 3.72 0.4564 WVFGRD96 58.0 305 70 -40 3.72 0.4555 WVFGRD96 59.0 305 75 -40 3.72 0.4555 WVFGRD96 60.0 305 75 -40 3.72 0.4576 WVFGRD96 61.0 305 75 -40 3.72 0.4571 WVFGRD96 62.0 305 75 -40 3.72 0.4554 WVFGRD96 63.0 305 75 -40 3.72 0.4566 WVFGRD96 64.0 305 75 -40 3.72 0.4555 WVFGRD96 65.0 305 75 -40 3.72 0.4563 WVFGRD96 66.0 305 75 -40 3.72 0.4557 WVFGRD96 67.0 305 75 -40 3.72 0.4525 WVFGRD96 68.0 305 75 -40 3.73 0.4553 WVFGRD96 69.0 305 75 -40 3.73 0.4522 WVFGRD96 70.0 305 75 -40 3.73 0.4525 WVFGRD96 71.0 305 75 -40 3.73 0.4514 WVFGRD96 72.0 305 80 -45 3.74 0.4513 WVFGRD96 73.0 305 80 -40 3.73 0.4493 WVFGRD96 74.0 305 80 -45 3.74 0.4488 WVFGRD96 75.0 305 80 -40 3.73 0.4484 WVFGRD96 76.0 305 80 -40 3.73 0.4457 WVFGRD96 77.0 305 80 -40 3.73 0.4462 WVFGRD96 78.0 295 70 -55 3.75 0.4446 WVFGRD96 79.0 305 80 -40 3.73 0.4420 WVFGRD96 80.0 295 70 -55 3.75 0.4428 WVFGRD96 81.0 295 70 -55 3.75 0.4393 WVFGRD96 82.0 295 70 -55 3.75 0.4403 WVFGRD96 83.0 295 70 -55 3.75 0.4365 WVFGRD96 84.0 300 75 -50 3.75 0.4362 WVFGRD96 85.0 300 75 -50 3.75 0.4353 WVFGRD96 86.0 300 75 -50 3.75 0.4339 WVFGRD96 87.0 300 75 -50 3.75 0.4337 WVFGRD96 88.0 295 70 -55 3.75 0.4318 WVFGRD96 89.0 295 70 -55 3.76 0.4317 WVFGRD96 90.0 295 70 -55 3.76 0.4288 WVFGRD96 91.0 295 70 -55 3.76 0.4297 WVFGRD96 92.0 295 70 -55 3.76 0.4276 WVFGRD96 93.0 295 70 -55 3.76 0.4272 WVFGRD96 94.0 295 70 -55 3.76 0.4268 WVFGRD96 95.0 295 70 -55 3.76 0.4244 WVFGRD96 96.0 295 70 -55 3.76 0.4255 WVFGRD96 97.0 295 70 -55 3.76 0.4227 WVFGRD96 98.0 295 70 -55 3.76 0.4235 WVFGRD96 99.0 295 70 -55 3.76 0.4214
The best solution is
WVFGRD96 60.0 305 75 -40 3.72 0.4576
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -30 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.12 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00