The ANSS event ID is ak0175u3s7id and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0175u3s7id/executive.
2017/05/07 04:25:19 60.183 -151.678 67.2 5.3 Alaska
USGS/SLU Moment Tensor Solution
ENS 2017/05/07 04:25:19:0 60.18 -151.68 67.2 5.3 Alaska
Stations used:
AK.BRLK AK.CAPN AK.CNP AK.CUT AK.FIRE AK.GHO AK.HOM AK.KNK
AK.PWL AK.RC01 AK.SAW AK.SSN AK.SWD AT.PMR AT.SVW2 AV.ILSW
TA.L19K TA.M19K TA.M20K TA.M22K TA.N18K TA.N19K TA.O18K
TA.O22K TA.P18K TA.P19K TA.Q19K
Filtering commands used:
cut o DIST/3.3 -50 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 1.20e+24 dyne-cm
Mw = 5.32
Z = 82 km
Plane Strike Dip Rake
NP1 50 65 30
NP2 306 63 152
Principal Axes:
Axis Value Plunge Azimuth
T 1.20e+24 38 269
N 0.00e+00 52 86
P -1.20e+24 1 178
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.20e+24
Mxy 6.29e+22
Mxz 1.32e+22
Myy 7.39e+23
Myz -5.85e+23
Mzz 4.60e+23
--------------
----------------------
----------------------------
------------------------------
#######--------------------------#
##############-------------------###
###################--------------#####
#######################-----------######
#########################--------#######
############################----##########
####### ####################-###########
####### T ###################---##########
####### #################------#########
########################----------######
######################-------------#####
##################-----------------###
##############--------------------##
#########-------------------------
------------------------------
----------------------------
---------- ---------
------ P -----
Global CMT Convention Moment Tensor:
R T P
4.60e+23 1.32e+22 5.85e+23
1.32e+22 -1.20e+24 -6.29e+22
5.85e+23 -6.29e+22 7.39e+23
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170507042519/index.html
|
STK = 50
DIP = 65
RAKE = 30
MW = 5.32
HS = 82.0
The NDK file is 20170507042519.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2017/05/07 04:25:19:0 60.18 -151.68 67.2 5.3 Alaska
Stations used:
AK.BRLK AK.CAPN AK.CNP AK.CUT AK.FIRE AK.GHO AK.HOM AK.KNK
AK.PWL AK.RC01 AK.SAW AK.SSN AK.SWD AT.PMR AT.SVW2 AV.ILSW
TA.L19K TA.M19K TA.M20K TA.M22K TA.N18K TA.N19K TA.O18K
TA.O22K TA.P18K TA.P19K TA.Q19K
Filtering commands used:
cut o DIST/3.3 -50 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 1.20e+24 dyne-cm
Mw = 5.32
Z = 82 km
Plane Strike Dip Rake
NP1 50 65 30
NP2 306 63 152
Principal Axes:
Axis Value Plunge Azimuth
T 1.20e+24 38 269
N 0.00e+00 52 86
P -1.20e+24 1 178
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.20e+24
Mxy 6.29e+22
Mxz 1.32e+22
Myy 7.39e+23
Myz -5.85e+23
Mzz 4.60e+23
--------------
----------------------
----------------------------
------------------------------
#######--------------------------#
##############-------------------###
###################--------------#####
#######################-----------######
#########################--------#######
############################----##########
####### ####################-###########
####### T ###################---##########
####### #################------#########
########################----------######
######################-------------#####
##################-----------------###
##############--------------------##
#########-------------------------
------------------------------
----------------------------
---------- ---------
------ P -----
Global CMT Convention Moment Tensor:
R T P
4.60e+23 1.32e+22 5.85e+23
1.32e+22 -1.20e+24 -6.29e+22
5.85e+23 -6.29e+22 7.39e+23
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170507042519/index.html
|
Regional Moment Tensor (Mwr) Moment 9.588e+16 N-m Magnitude 5.3 Mwr Depth 77.0 km Percent DC 93 % Half Duration – Catalog US Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 314 70 155 NP2 53 66 22 Principal Axes Axis Value Plunge Azimuth T 9.751e+16 N-m 32 273 N -0.334e+16 N-m 58 98 P -9.416e+16 N-m 2 4 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 2.0 110 55 -50 4.53 0.2516
WVFGRD96 4.0 305 85 -25 4.55 0.2732
WVFGRD96 6.0 125 85 25 4.62 0.2900
WVFGRD96 8.0 125 85 30 4.69 0.2993
WVFGRD96 10.0 130 80 25 4.73 0.2975
WVFGRD96 12.0 215 70 -10 4.77 0.2971
WVFGRD96 14.0 215 70 -5 4.80 0.2990
WVFGRD96 16.0 215 70 -5 4.83 0.2978
WVFGRD96 18.0 35 70 -10 4.85 0.3034
WVFGRD96 20.0 40 75 -5 4.88 0.3118
WVFGRD96 22.0 40 75 0 4.90 0.3210
WVFGRD96 24.0 40 75 0 4.92 0.3312
WVFGRD96 26.0 40 75 5 4.94 0.3431
WVFGRD96 28.0 40 75 5 4.96 0.3546
WVFGRD96 30.0 220 75 5 4.99 0.3692
WVFGRD96 32.0 220 80 -5 5.00 0.3827
WVFGRD96 34.0 220 80 -5 5.02 0.3976
WVFGRD96 36.0 220 80 -5 5.05 0.4103
WVFGRD96 38.0 45 80 15 5.07 0.4258
WVFGRD96 40.0 50 75 30 5.14 0.4553
WVFGRD96 42.0 50 75 25 5.16 0.4640
WVFGRD96 44.0 50 70 30 5.19 0.4711
WVFGRD96 46.0 50 70 30 5.20 0.4809
WVFGRD96 48.0 50 70 30 5.22 0.4911
WVFGRD96 50.0 50 70 30 5.23 0.5056
WVFGRD96 52.0 50 70 30 5.24 0.5170
WVFGRD96 54.0 50 70 30 5.25 0.5303
WVFGRD96 56.0 50 70 30 5.26 0.5431
WVFGRD96 58.0 50 70 30 5.27 0.5540
WVFGRD96 60.0 50 70 30 5.28 0.5637
WVFGRD96 62.0 50 70 30 5.28 0.5716
WVFGRD96 64.0 50 70 30 5.29 0.5789
WVFGRD96 66.0 50 70 30 5.29 0.5844
WVFGRD96 68.0 50 70 30 5.30 0.5903
WVFGRD96 70.0 50 70 30 5.30 0.5938
WVFGRD96 72.0 50 70 30 5.30 0.5968
WVFGRD96 74.0 50 65 30 5.31 0.5989
WVFGRD96 76.0 50 65 30 5.31 0.6007
WVFGRD96 78.0 50 65 30 5.31 0.6013
WVFGRD96 80.0 50 70 30 5.32 0.6024
WVFGRD96 82.0 50 65 30 5.32 0.6028
WVFGRD96 84.0 50 70 30 5.33 0.6011
WVFGRD96 86.0 50 65 30 5.33 0.6001
WVFGRD96 88.0 50 65 25 5.33 0.6005
WVFGRD96 90.0 50 65 25 5.33 0.5991
WVFGRD96 92.0 50 65 25 5.33 0.5959
WVFGRD96 94.0 50 65 25 5.34 0.5938
WVFGRD96 96.0 50 65 30 5.34 0.5934
WVFGRD96 98.0 50 65 30 5.35 0.5912
The best solution is
WVFGRD96 82.0 50 65 30 5.32 0.6028
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00