The ANSS event ID is ak0172sx1gks and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0172sx1gks/executive.
2017/03/02 02:11:30 59.578 -152.655 78.0 5.6 Alaska
USGS/SLU Moment Tensor Solution
ENS 2017/03/02 02:11:30:0 59.58 -152.65 78.0 5.6 Alaska
Stations used:
AK.BRLK AK.CAPN AK.CAST AK.CNP AK.CUT AK.FIRE AK.GHO AK.HOM
AK.PWL AK.RC01 AK.SKN AK.SSN AK.SWD AT.OHAK AT.PMR AT.SVW2
AV.ILSW II.KDAK TA.M22K TA.N19K TA.O19K TA.O22K TA.P18K
TA.Q19K
Filtering commands used:
cut o DIST/3.3 -50 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 2.66e+24 dyne-cm
Mw = 5.55
Z = 90 km
Plane Strike Dip Rake
NP1 302 66 141
NP2 50 55 30
Principal Axes:
Axis Value Plunge Azimuth
T 2.66e+24 44 262
N 0.00e+00 45 95
P -2.66e+24 7 358
Moment Tensor: (dyne-cm)
Component Value
Mxx -2.59e+24
Mxy 2.88e+23
Mxz -5.01e+23
Myy 1.34e+24
Myz -1.30e+24
Mzz 1.25e+24
----- P ------
--------- ----------
----------------------------
------------------------------
---------------------------------#
##########------------------------##
################-------------------###
#####################--------------#####
########################----------######
############################------########
######## ###################---#########
######## T ###############################
######## ####################---########
############################------######
##########################----------####
#######################-------------##
###################----------------#
##############--------------------
------------------------------
----------------------------
----------------------
--------------
Global CMT Convention Moment Tensor:
R T P
1.25e+24 -5.01e+23 1.30e+24
-5.01e+23 -2.59e+24 -2.88e+23
1.30e+24 -2.88e+23 1.34e+24
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170302021130/index.html
|
STK = 50
DIP = 55
RAKE = 30
MW = 5.55
HS = 90.0
The NDK file is 20170302021130.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2017/03/02 02:11:30:0 59.58 -152.65 78.0 5.6 Alaska
Stations used:
AK.BRLK AK.CAPN AK.CAST AK.CNP AK.CUT AK.FIRE AK.GHO AK.HOM
AK.PWL AK.RC01 AK.SKN AK.SSN AK.SWD AT.OHAK AT.PMR AT.SVW2
AV.ILSW II.KDAK TA.M22K TA.N19K TA.O19K TA.O22K TA.P18K
TA.Q19K
Filtering commands used:
cut o DIST/3.3 -50 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 2.66e+24 dyne-cm
Mw = 5.55
Z = 90 km
Plane Strike Dip Rake
NP1 302 66 141
NP2 50 55 30
Principal Axes:
Axis Value Plunge Azimuth
T 2.66e+24 44 262
N 0.00e+00 45 95
P -2.66e+24 7 358
Moment Tensor: (dyne-cm)
Component Value
Mxx -2.59e+24
Mxy 2.88e+23
Mxz -5.01e+23
Myy 1.34e+24
Myz -1.30e+24
Mzz 1.25e+24
----- P ------
--------- ----------
----------------------------
------------------------------
---------------------------------#
##########------------------------##
################-------------------###
#####################--------------#####
########################----------######
############################------########
######## ###################---#########
######## T ###############################
######## ####################---########
############################------######
##########################----------####
#######################-------------##
###################----------------#
##############--------------------
------------------------------
----------------------------
----------------------
--------------
Global CMT Convention Moment Tensor:
R T P
1.25e+24 -5.01e+23 1.30e+24
-5.01e+23 -2.59e+24 -2.88e+23
1.30e+24 -2.88e+23 1.34e+24
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170302021130/index.html
|
Nody-wave Moment Tensor (Mwb) Moment 2.921e+17 N-m Magnitude 5.6 Mwb Depth 76.0 km Percent DC 94 % Half Duration – Catalog US Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 304 64 137 NP2 56 52 33 Principal Axes Axis Value Plunge Azimuth T 2.968e+17 N-m 48 264 N -0.096e+17 N-m 41 99 P -2.871e+17 N-m 7 3 |
Regional Moment Tensor (Mwr) Moment 2.663e+17 N-m Magnitude 5.6 Mwr Depth 80.0 km Percent DC 98 % Half Duration – Catalog US Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 297 55 141 NP2 53 59 42 Principal Axes Axis Value Plunge Azimuth T 2.676e+17 N-m 51 267 N -0.028e+17 N-m 39 82 P -2.649e+17 N-m 2 174 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 2.0 80 40 -85 4.68 0.1511
WVFGRD96 4.0 300 70 30 4.69 0.1717
WVFGRD96 6.0 290 55 -25 4.73 0.1921
WVFGRD96 8.0 290 55 -30 4.82 0.2145
WVFGRD96 10.0 300 65 25 4.87 0.2287
WVFGRD96 12.0 300 65 25 4.90 0.2368
WVFGRD96 14.0 300 65 25 4.92 0.2335
WVFGRD96 16.0 35 65 25 4.94 0.2294
WVFGRD96 18.0 25 55 -5 4.98 0.2317
WVFGRD96 20.0 25 60 -5 5.02 0.2469
WVFGRD96 22.0 25 55 -5 5.05 0.2605
WVFGRD96 24.0 25 55 -5 5.07 0.2713
WVFGRD96 26.0 25 55 -5 5.10 0.2776
WVFGRD96 28.0 25 55 -5 5.11 0.2795
WVFGRD96 30.0 30 55 0 5.12 0.2809
WVFGRD96 32.0 30 60 5 5.14 0.2820
WVFGRD96 34.0 30 60 5 5.15 0.2809
WVFGRD96 36.0 35 65 10 5.16 0.2807
WVFGRD96 38.0 35 65 10 5.19 0.2868
WVFGRD96 40.0 35 55 10 5.27 0.2992
WVFGRD96 42.0 35 60 10 5.28 0.3022
WVFGRD96 44.0 35 60 15 5.31 0.3057
WVFGRD96 46.0 40 60 20 5.33 0.3090
WVFGRD96 48.0 40 60 20 5.35 0.3126
WVFGRD96 50.0 40 60 20 5.36 0.3158
WVFGRD96 52.0 40 60 20 5.37 0.3192
WVFGRD96 54.0 40 60 25 5.39 0.3237
WVFGRD96 56.0 45 60 30 5.41 0.3309
WVFGRD96 58.0 45 60 30 5.42 0.3387
WVFGRD96 60.0 45 60 30 5.43 0.3491
WVFGRD96 62.0 45 60 30 5.44 0.3597
WVFGRD96 64.0 50 55 30 5.46 0.3706
WVFGRD96 66.0 50 55 30 5.47 0.3818
WVFGRD96 68.0 50 55 30 5.48 0.3920
WVFGRD96 70.0 50 55 30 5.49 0.4020
WVFGRD96 72.0 50 55 30 5.50 0.4104
WVFGRD96 74.0 50 55 30 5.51 0.4182
WVFGRD96 76.0 50 60 30 5.52 0.4252
WVFGRD96 78.0 50 60 30 5.53 0.4299
WVFGRD96 80.0 50 60 30 5.53 0.4339
WVFGRD96 82.0 50 55 30 5.53 0.4364
WVFGRD96 84.0 50 55 30 5.54 0.4385
WVFGRD96 86.0 50 55 30 5.54 0.4407
WVFGRD96 88.0 50 55 30 5.55 0.4410
WVFGRD96 90.0 50 55 30 5.55 0.4415
WVFGRD96 92.0 50 55 30 5.55 0.4403
WVFGRD96 94.0 50 55 30 5.55 0.4382
WVFGRD96 96.0 50 55 30 5.56 0.4361
WVFGRD96 98.0 50 55 30 5.56 0.4339
The best solution is
WVFGRD96 90.0 50 55 30 5.55 0.4415
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00