The ANSS event ID is ak0172b22lil and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0172b22lil/executive.
2017/02/19 22:17:29 59.731 -153.139 103.0 4.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2017/02/19 22:17:29:0 59.73 -153.14 103.0 4.1 Alaska Stations used: AK.CAPN AK.CNP AK.RC01 AK.SKN AK.SSN AT.SVW2 AV.ILSW TA.M19K TA.O19K TA.O22K TA.P18K TA.P19K TA.Q19K Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.55e+22 dyne-cm Mw = 4.06 Z = 120 km Plane Strike Dip Rake NP1 308 71 159 NP2 45 70 20 Principal Axes: Axis Value Plunge Azimuth T 1.55e+22 28 266 N 0.00e+00 62 88 P -1.55e+22 1 357 Moment Tensor: (dyne-cm) Component Value Mxx -1.54e+22 Mxy 1.70e+21 Mxz -6.50e+20 Myy 1.20e+22 Myz -6.39e+21 Mzz 3.41e+21 ---- P ------- -------- ----------- ---------------------------- ------------------------------ #####--------------------------### ###########--------------------##### ###############-----------------###### ###################-------------######## ######################--------########## #########################-----############ #### ####################--############# #### T ####################--############# #### ##################------########### #######################---------######## #####################------------####### #################----------------##### ##############-------------------### ##########-----------------------# ###--------------------------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 3.41e+21 -6.50e+20 6.39e+21 -6.50e+20 -1.54e+22 -1.70e+21 6.39e+21 -1.70e+21 1.20e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170219221729/index.html |
STK = 45 DIP = 70 RAKE = 20 MW = 4.06 HS = 120.0
The NDK file is 20170219221729.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 225 70 -20 3.03 0.1106 WVFGRD96 4.0 220 55 -25 3.17 0.1311 WVFGRD96 6.0 220 55 -15 3.22 0.1521 WVFGRD96 8.0 325 70 35 3.32 0.1637 WVFGRD96 10.0 320 65 25 3.35 0.1734 WVFGRD96 12.0 320 60 15 3.39 0.1732 WVFGRD96 14.0 315 55 -10 3.41 0.1699 WVFGRD96 16.0 315 55 -10 3.43 0.1598 WVFGRD96 18.0 315 50 -10 3.43 0.1469 WVFGRD96 20.0 315 50 -10 3.44 0.1337 WVFGRD96 22.0 315 50 -10 3.45 0.1212 WVFGRD96 24.0 50 80 -5 3.48 0.1160 WVFGRD96 26.0 50 80 -5 3.51 0.1269 WVFGRD96 28.0 50 85 -5 3.54 0.1398 WVFGRD96 30.0 230 90 10 3.56 0.1537 WVFGRD96 32.0 50 85 -10 3.59 0.1645 WVFGRD96 34.0 50 85 -10 3.61 0.1708 WVFGRD96 36.0 50 85 -10 3.64 0.1729 WVFGRD96 38.0 230 90 5 3.67 0.1750 WVFGRD96 40.0 50 90 -5 3.73 0.1788 WVFGRD96 42.0 50 90 -5 3.75 0.1777 WVFGRD96 44.0 230 90 5 3.78 0.1760 WVFGRD96 46.0 230 80 -5 3.80 0.1746 WVFGRD96 48.0 230 80 -5 3.82 0.1761 WVFGRD96 50.0 230 80 -5 3.84 0.1784 WVFGRD96 52.0 230 80 -5 3.85 0.1820 WVFGRD96 54.0 230 80 -5 3.87 0.1904 WVFGRD96 56.0 50 80 25 3.89 0.2142 WVFGRD96 58.0 50 80 25 3.91 0.2383 WVFGRD96 60.0 50 75 25 3.92 0.2551 WVFGRD96 62.0 50 75 25 3.94 0.2660 WVFGRD96 64.0 50 75 25 3.95 0.2758 WVFGRD96 66.0 50 75 25 3.96 0.2859 WVFGRD96 68.0 50 75 25 3.97 0.2953 WVFGRD96 70.0 50 75 25 3.98 0.3035 WVFGRD96 72.0 50 75 25 3.98 0.3125 WVFGRD96 74.0 50 75 25 3.99 0.3193 WVFGRD96 76.0 50 75 25 4.00 0.3256 WVFGRD96 78.0 50 75 30 4.00 0.3323 WVFGRD96 80.0 50 75 25 4.01 0.3357 WVFGRD96 82.0 50 70 30 4.01 0.3415 WVFGRD96 84.0 50 70 30 4.01 0.3451 WVFGRD96 86.0 50 70 30 4.01 0.3496 WVFGRD96 88.0 50 65 30 4.01 0.3540 WVFGRD96 90.0 50 65 30 4.02 0.3565 WVFGRD96 92.0 50 65 30 4.02 0.3612 WVFGRD96 94.0 50 65 30 4.02 0.3643 WVFGRD96 96.0 50 65 30 4.02 0.3653 WVFGRD96 98.0 50 65 30 4.03 0.3676 WVFGRD96 100.0 45 70 25 4.04 0.3694 WVFGRD96 102.0 45 70 25 4.04 0.3706 WVFGRD96 104.0 45 70 25 4.05 0.3715 WVFGRD96 106.0 45 70 25 4.05 0.3723 WVFGRD96 108.0 45 70 25 4.05 0.3744 WVFGRD96 110.0 45 70 25 4.05 0.3758 WVFGRD96 112.0 45 70 25 4.05 0.3766 WVFGRD96 114.0 45 70 25 4.06 0.3765 WVFGRD96 116.0 45 70 25 4.06 0.3769 WVFGRD96 118.0 45 70 20 4.06 0.3773 WVFGRD96 120.0 45 70 20 4.06 0.3778 WVFGRD96 122.0 45 70 20 4.07 0.3776 WVFGRD96 124.0 45 70 20 4.07 0.3771 WVFGRD96 126.0 45 70 20 4.07 0.3773 WVFGRD96 128.0 45 70 20 4.07 0.3772 WVFGRD96 130.0 45 70 20 4.07 0.3765 WVFGRD96 132.0 55 65 25 4.05 0.3769 WVFGRD96 134.0 55 65 25 4.05 0.3777 WVFGRD96 136.0 55 65 25 4.05 0.3774 WVFGRD96 138.0 55 65 25 4.06 0.3774
The best solution is
WVFGRD96 120.0 45 70 20 4.06 0.3778
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00