The ANSS event ID is nn00570744 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00570744/executive.
2016/12/28 09:13:47 38.378 -118.896 8.8 5.5 Nevada
USGS/SLU Moment Tensor Solution ENS 2016/12/28 09:13:47:0 38.38 -118.90 8.8 5.5 Nevada Stations used: CI.CCA CI.GSC LB.BMN NC.AFD NC.BBGB NC.MDPB NN.BEK NN.CMK6 NN.COLR NN.DSP NN.EMB NN.GWY NN.KVN NN.LCH NN.MPK NN.MZPB NN.OMMB NN.PIO NN.PLTX NN.PNT NN.PRN NN.Q09A NN.S11A NN.SPR3 NN.VCN NN.WLDB NN.WTNK NN.YER SN.HEL TA.R11A US.ELK US.TPNV UU.PSUT Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.48e+24 dyne-cm Mw = 5.53 Z = 14 km Plane Strike Dip Rake NP1 210 90 -5 NP2 300 85 -180 Principal Axes: Axis Value Plunge Azimuth T 2.48e+24 4 255 N 0.00e+00 85 30 P -2.48e+24 4 165 Moment Tensor: (dyne-cm) Component Value Mxx -2.14e+24 Mxy 1.24e+24 Mxz 1.08e+23 Myy 2.14e+24 Myz -1.87e+23 Mzz 1.89e+16 -------------- ---------------------# -----------------------##### -----------------------####### ------------------------########## #-----------------------############ ######------------------############## ###########-------------################ ##############---------################# ###################----################### ########################################## ####################-----################# ################---------############## T ###############-------------########## ##############-----------------####### ##############--------------------#### ############------------------------ ##########------------------------ #######----------------------- #####----------------------- #-------------- ---- ----------- P Global CMT Convention Moment Tensor: R T P 1.89e+16 1.08e+23 1.87e+23 1.08e+23 -2.14e+24 -1.24e+24 1.87e+23 -1.24e+24 2.14e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20161228091347/index.html |
STK = 210 DIP = 90 RAKE = -5 MW = 5.53 HS = 14.0
The NDK file is 20161228091347.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2016/12/28 09:13:47:0 38.38 -118.90 8.8 5.5 Nevada Stations used: CI.CCA CI.GSC LB.BMN NC.AFD NC.BBGB NC.MDPB NN.BEK NN.CMK6 NN.COLR NN.DSP NN.EMB NN.GWY NN.KVN NN.LCH NN.MPK NN.MZPB NN.OMMB NN.PIO NN.PLTX NN.PNT NN.PRN NN.Q09A NN.S11A NN.SPR3 NN.VCN NN.WLDB NN.WTNK NN.YER SN.HEL TA.R11A US.ELK US.TPNV UU.PSUT Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.48e+24 dyne-cm Mw = 5.53 Z = 14 km Plane Strike Dip Rake NP1 210 90 -5 NP2 300 85 -180 Principal Axes: Axis Value Plunge Azimuth T 2.48e+24 4 255 N 0.00e+00 85 30 P -2.48e+24 4 165 Moment Tensor: (dyne-cm) Component Value Mxx -2.14e+24 Mxy 1.24e+24 Mxz 1.08e+23 Myy 2.14e+24 Myz -1.87e+23 Mzz 1.89e+16 -------------- ---------------------# -----------------------##### -----------------------####### ------------------------########## #-----------------------############ ######------------------############## ###########-------------################ ##############---------################# ###################----################### ########################################## ####################-----################# ################---------############## T ###############-------------########## ##############-----------------####### ##############--------------------#### ############------------------------ ##########------------------------ #######----------------------- #####----------------------- #-------------- ---- ----------- P Global CMT Convention Moment Tensor: R T P 1.89e+16 1.08e+23 1.87e+23 1.08e+23 -2.14e+24 -1.24e+24 1.87e+23 -1.24e+24 2.14e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20161228091347/index.html |
Regional Moment Tensor (Mwr) Moment 2.630e+17 N-m Magnitude 5.5 Mwr Depth 12.0 km Percent DC 99 % Half Duration – Catalog NN Data Source NN2 Contributor NN2 Nodal Planes Plane Strike Dip Rake NP1 210 89 4 NP2 120 86 179 Principal Axes Axis Value Plunge Azimuth T 2.618e+17 N-m 3 75 N 0.014e+17 N-m 86 225 P -2.642e+17 N-m 2 345 |
December 28, 2016, CALIFORNIA-NEVADA BORDER REGION, MW=5.7 Goran Ekstrom CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201612280913A DATA: II IU CU MN LD G IC DK GE L.P.BODY WAVES:106S, 166C, T= 40 SURFACE WAVES: 150S, 313C, T= 50 TIMESTAMP: Q-20161228123501 CENTROID LOCATION: ORIGIN TIME: 09:13:51.9 0.1 LAT:38.38N 0.01;LON:118.92W 0.01 DEP: 24.9 0.5;TRIANG HDUR: 1.7 MOMENT TENSOR: SCALE 10**24 D-CM RR=-0.817 0.068; TT=-3.580 0.060 PP= 4.400 0.064; RT=-0.622 0.146 RP= 1.100 0.134; TP=-2.440 0.051 PRINCIPAL AXES: 1.(T) VAL= 5.332;PLG=11;AZM=254 2.(N) -1.035; 78; 99 3.(P) -4.294; 5; 345 BEST DBLE.COUPLE:M0= 4.81*10**24 NP1: STRIKE= 30;DIP=78;SLIP= 4 NP2: STRIKE=299;DIP=86;SLIP= 168 P -------- ---- -----------# -------------------#### ---------------------###### ---------------------######## #####----------------########## #########------------########## #############--------############ #################---############# ###################-############# # ##############-----########## T ############----------###### ###########--------------### ############----------------- #########------------------ ######----------------- ##----------------- ----------- |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 35 90 0 5.06 0.3508 WVFGRD96 2.0 30 70 -20 5.22 0.4814 WVFGRD96 3.0 215 90 0 5.23 0.5362 WVFGRD96 4.0 210 75 -20 5.30 0.5834 WVFGRD96 5.0 215 85 -15 5.32 0.6270 WVFGRD96 6.0 215 90 -15 5.35 0.6693 WVFGRD96 7.0 215 90 -10 5.38 0.7099 WVFGRD96 8.0 35 80 15 5.42 0.7536 WVFGRD96 9.0 210 90 -10 5.45 0.7803 WVFGRD96 10.0 210 90 -10 5.47 0.8043 WVFGRD96 11.0 35 85 10 5.48 0.8210 WVFGRD96 12.0 30 90 5 5.50 0.8322 WVFGRD96 13.0 210 90 -5 5.52 0.8379 WVFGRD96 14.0 210 90 -5 5.53 0.8393 WVFGRD96 15.0 30 90 -5 5.54 0.8377 WVFGRD96 16.0 30 90 -5 5.55 0.8330 WVFGRD96 17.0 210 90 5 5.56 0.8254 WVFGRD96 18.0 210 90 5 5.57 0.8156 WVFGRD96 19.0 210 90 5 5.58 0.8041 WVFGRD96 20.0 30 90 -5 5.58 0.7911 WVFGRD96 21.0 30 90 -5 5.59 0.7772 WVFGRD96 22.0 30 90 -5 5.60 0.7620 WVFGRD96 23.0 30 90 -5 5.60 0.7464 WVFGRD96 24.0 210 90 5 5.61 0.7301 WVFGRD96 25.0 30 90 -5 5.61 0.7134 WVFGRD96 26.0 30 90 -5 5.61 0.6968 WVFGRD96 27.0 210 90 5 5.62 0.6798 WVFGRD96 28.0 30 90 -5 5.62 0.6631 WVFGRD96 29.0 30 90 -5 5.63 0.6465
The best solution is
WVFGRD96 14.0 210 90 -5 5.53 0.8393
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00