The ANSS event ID is us100073m6 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us100073m6/executive.
2016/11/02 04:26:54 36.305 -96.666 4.3 4.4 Oklahoma
USGS/SLU Moment Tensor Solution
ENS 2016/11/02 04:26:54:0 36.31 -96.67 4.3 4.4 Oklahoma
Stations used:
GS.KAN01 GS.KAN06 GS.KAN08 GS.KAN09 GS.KAN12 GS.KAN14
GS.KAN17 GS.KS20 GS.OK025 GS.OK029 GS.OK031 GS.OK032
GS.OK033 GS.OK034 GS.OK035 GS.OK038 GS.OK045 GS.OK046
GS.OK048 GS.OK049 GS.OK050 GS.OK051 N4.T35B OK.BCOK OK.BLOK
OK.CHOK OK.CROK OK.CSTR OK.DEOK OK.ELIS OK.FNO OK.HTCH
OK.QUOK OK.U32A TA.TUL1 YW.508 YW.512 YW.518
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 2.79e+22 dyne-cm
Mw = 4.23
Z = 4 km
Plane Strike Dip Rake
NP1 55 85 175
NP2 145 85 5
Principal Axes:
Axis Value Plunge Azimuth
T 2.79e+22 7 10
N 0.00e+00 83 190
P -2.79e+22 0 100
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.58e+22
Mxy 9.26e+21
Mxz 3.35e+21
Myy -2.63e+22
Myz 5.71e+20
Mzz 4.22e+20
######### T ##
############# ######
---#########################
-----#########################
--------##########################
----------#######################---
------------####################------
--------------#################---------
---------------#############------------
------------------#########---------------
-------------------#####------------------
--------------------##------------------
-------------------##------------------- P
----------------######-----------------
-------------##########-----------------
---------###############--------------
-----###################------------
########################----------
########################------
#########################---
######################
##############
Global CMT Convention Moment Tensor:
R T P
4.22e+20 3.35e+21 -5.71e+20
3.35e+21 2.58e+22 -9.26e+21
-5.71e+20 -9.26e+21 -2.63e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20161102042654/index.html
|
STK = 145
DIP = 85
RAKE = 5
MW = 4.23
HS = 4.0
The NDK file is 20161102042654.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2016/11/02 04:26:54:0 36.31 -96.67 4.3 4.4 Oklahoma
Stations used:
GS.KAN01 GS.KAN06 GS.KAN08 GS.KAN09 GS.KAN12 GS.KAN14
GS.KAN17 GS.KS20 GS.OK025 GS.OK029 GS.OK031 GS.OK032
GS.OK033 GS.OK034 GS.OK035 GS.OK038 GS.OK045 GS.OK046
GS.OK048 GS.OK049 GS.OK050 GS.OK051 N4.T35B OK.BCOK OK.BLOK
OK.CHOK OK.CROK OK.CSTR OK.DEOK OK.ELIS OK.FNO OK.HTCH
OK.QUOK OK.U32A TA.TUL1 YW.508 YW.512 YW.518
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 2.79e+22 dyne-cm
Mw = 4.23
Z = 4 km
Plane Strike Dip Rake
NP1 55 85 175
NP2 145 85 5
Principal Axes:
Axis Value Plunge Azimuth
T 2.79e+22 7 10
N 0.00e+00 83 190
P -2.79e+22 0 100
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.58e+22
Mxy 9.26e+21
Mxz 3.35e+21
Myy -2.63e+22
Myz 5.71e+20
Mzz 4.22e+20
######### T ##
############# ######
---#########################
-----#########################
--------##########################
----------#######################---
------------####################------
--------------#################---------
---------------#############------------
------------------#########---------------
-------------------#####------------------
--------------------##------------------
-------------------##------------------- P
----------------######-----------------
-------------##########-----------------
---------###############--------------
-----###################------------
########################----------
########################------
#########################---
######################
##############
Global CMT Convention Moment Tensor:
R T P
4.22e+20 3.35e+21 -5.71e+20
3.35e+21 2.58e+22 -9.26e+21
-5.71e+20 -9.26e+21 -2.63e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20161102042654/index.html
|
Regional Moment Tensor (Mwr) Moment 6.181e+15 N-m Magnitude 4.5 Mwr Depth 4.0 km Percent DC 73 % Half Duration – Catalog US Data Source US1 Contributor US1 Nodal Planes Plane Strike Dip Rake NP1 234 86 155 NP2 326 65 4 Principal Axes Axis Value Plunge Azimuth T 6.578e+15 N-m 20 187 N -0.890e+15 N-m 65 46 P -5.688e+15 N-m 15 283 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 55 90 -15 4.00 0.3632
WVFGRD96 2.0 145 65 0 4.14 0.4241
WVFGRD96 3.0 145 85 0 4.19 0.4612
WVFGRD96 4.0 145 85 5 4.23 0.4638
WVFGRD96 5.0 325 90 -5 4.26 0.4502
WVFGRD96 6.0 145 90 -10 4.28 0.4358
WVFGRD96 7.0 325 80 5 4.31 0.4273
WVFGRD96 8.0 325 75 5 4.36 0.4304
WVFGRD96 9.0 325 70 5 4.38 0.4243
WVFGRD96 10.0 325 70 5 4.40 0.4203
WVFGRD96 11.0 325 75 10 4.41 0.4161
WVFGRD96 12.0 325 75 5 4.43 0.4114
WVFGRD96 13.0 325 75 5 4.44 0.4061
WVFGRD96 14.0 325 75 10 4.45 0.3996
WVFGRD96 15.0 325 75 10 4.46 0.3918
WVFGRD96 16.0 325 75 10 4.48 0.3831
WVFGRD96 17.0 325 75 10 4.49 0.3734
WVFGRD96 18.0 325 75 10 4.49 0.3626
WVFGRD96 19.0 325 75 10 4.50 0.3518
WVFGRD96 20.0 325 75 10 4.51 0.3414
The best solution is
WVFGRD96 4.0 145 85 5 4.23 0.4638
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00