The ANSS event ID is ak016dnda5em and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak016dnda5em/executive.
2016/10/23 11:20:10 61.919 -151.748 99.7 4.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2016/10/23 11:20:10:0 61.92 -151.75 99.7 4.1 Alaska Stations used: AK.CAPN AK.CAST AK.DHY AK.KTH AK.MCK AK.RC01 AK.RND AK.SKN AK.SSN AK.TRF AV.ILSW TA.L19K TA.M19K TA.M22K TA.N18K TA.N19K TA.O18K TA.O19K TA.O22K Filtering commands used: cut o DIST/3.9 -40 o DIST/3.9 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.60e+22 dyne-cm Mw = 4.21 Z = 134 km Plane Strike Dip Rake NP1 350 88 115 NP2 85 25 5 Principal Axes: Axis Value Plunge Azimuth T 2.60e+22 42 284 N 0.00e+00 25 169 P -2.60e+22 38 58 Moment Tensor: (dyne-cm) Component Value Mxx -3.62e+21 Mxy -1.06e+22 Mxz -3.50e+21 Myy 1.89e+21 Myz -2.33e+22 Mzz 1.74e+21 ####---------- ########-------------- ############---------------- #############----------------- ###############------------------- #################------------------- ##################---------- ------- ###################---------- P -------- ####### ##########--------- -------- ######## T ##########--------------------- ######## ##########--------------------- ######################-------------------# -#####################------------------## #####################------------------# --####################---------------### --###################--------------### ---#################------------#### ----###############----------##### -----#############------###### ------------###--########### --------------######## ----------#### Global CMT Convention Moment Tensor: R T P 1.74e+21 -3.50e+21 2.33e+22 -3.50e+21 -3.62e+21 1.06e+22 2.33e+22 1.06e+22 1.89e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20161023112010/index.html |
STK = 85 DIP = 25 RAKE = 5 MW = 4.21 HS = 134.0
The NDK file is 20161023112010.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.9 -40 o DIST/3.9 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 160 90 0 3.25 0.2692 WVFGRD96 4.0 160 80 -10 3.37 0.3151 WVFGRD96 6.0 160 80 -5 3.44 0.3306 WVFGRD96 8.0 160 80 -5 3.51 0.3345 WVFGRD96 10.0 160 80 -5 3.55 0.3190 WVFGRD96 12.0 160 80 -5 3.58 0.2942 WVFGRD96 14.0 160 80 -5 3.60 0.2669 WVFGRD96 16.0 245 75 5 3.59 0.2457 WVFGRD96 18.0 245 75 5 3.62 0.2504 WVFGRD96 20.0 245 75 5 3.66 0.2618 WVFGRD96 22.0 245 75 5 3.69 0.2789 WVFGRD96 24.0 250 80 5 3.74 0.2979 WVFGRD96 26.0 250 80 5 3.76 0.3173 WVFGRD96 28.0 245 80 0 3.76 0.3341 WVFGRD96 30.0 245 80 0 3.78 0.3500 WVFGRD96 32.0 245 80 5 3.80 0.3663 WVFGRD96 34.0 245 80 5 3.82 0.3849 WVFGRD96 36.0 245 80 5 3.85 0.3980 WVFGRD96 38.0 250 85 5 3.90 0.4112 WVFGRD96 40.0 70 90 0 3.95 0.4266 WVFGRD96 42.0 250 85 5 3.98 0.4314 WVFGRD96 44.0 250 80 5 4.01 0.4376 WVFGRD96 46.0 250 85 5 4.03 0.4406 WVFGRD96 48.0 250 85 5 4.04 0.4438 WVFGRD96 50.0 70 90 -5 4.06 0.4471 WVFGRD96 52.0 70 80 -5 4.06 0.4559 WVFGRD96 54.0 70 80 -5 4.07 0.4636 WVFGRD96 56.0 70 75 -5 4.08 0.4726 WVFGRD96 58.0 70 75 0 4.08 0.4813 WVFGRD96 60.0 70 75 0 4.09 0.4879 WVFGRD96 62.0 70 75 0 4.09 0.4923 WVFGRD96 64.0 70 70 0 4.09 0.4978 WVFGRD96 66.0 70 70 0 4.09 0.5030 WVFGRD96 68.0 70 70 0 4.09 0.5060 WVFGRD96 70.0 70 65 0 4.09 0.5116 WVFGRD96 72.0 70 65 5 4.10 0.5135 WVFGRD96 74.0 70 65 5 4.10 0.5180 WVFGRD96 76.0 70 60 5 4.10 0.5189 WVFGRD96 78.0 70 60 5 4.10 0.5243 WVFGRD96 80.0 70 60 10 4.10 0.5271 WVFGRD96 82.0 70 55 10 4.10 0.5304 WVFGRD96 84.0 70 55 10 4.10 0.5342 WVFGRD96 86.0 70 55 10 4.11 0.5357 WVFGRD96 88.0 70 55 10 4.11 0.5350 WVFGRD96 90.0 70 50 5 4.11 0.5380 WVFGRD96 92.0 70 50 5 4.11 0.5419 WVFGRD96 94.0 70 50 5 4.11 0.5434 WVFGRD96 96.0 70 50 5 4.11 0.5433 WVFGRD96 98.0 75 40 5 4.13 0.5447 WVFGRD96 100.0 75 40 5 4.13 0.5490 WVFGRD96 102.0 75 40 5 4.13 0.5509 WVFGRD96 104.0 75 40 5 4.14 0.5523 WVFGRD96 106.0 75 40 5 4.14 0.5563 WVFGRD96 108.0 80 30 5 4.16 0.5581 WVFGRD96 110.0 80 30 5 4.17 0.5609 WVFGRD96 112.0 80 30 5 4.17 0.5651 WVFGRD96 114.0 80 30 5 4.17 0.5659 WVFGRD96 116.0 80 30 5 4.17 0.5695 WVFGRD96 118.0 80 30 5 4.17 0.5712 WVFGRD96 120.0 85 25 5 4.20 0.5716 WVFGRD96 122.0 85 25 5 4.20 0.5747 WVFGRD96 124.0 85 25 5 4.20 0.5730 WVFGRD96 126.0 85 25 5 4.20 0.5757 WVFGRD96 128.0 85 25 5 4.20 0.5745 WVFGRD96 130.0 85 25 5 4.21 0.5761 WVFGRD96 132.0 85 25 5 4.21 0.5762 WVFGRD96 134.0 85 25 5 4.21 0.5766 WVFGRD96 136.0 85 25 5 4.21 0.5761 WVFGRD96 138.0 85 25 5 4.21 0.5746
The best solution is
WVFGRD96 134.0 85 25 5 4.21 0.5766
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.9 -40 o DIST/3.9 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00