The ANSS event ID is ak016dljpinx and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak016dljpinx/executive.
2016/10/22 01:06:33 62.515 -151.274 99.8 4.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2016/10/22 01:06:33:0 62.51 -151.27 99.8 4.1 Alaska Stations used: AK.BPAW AK.BWN AK.DHY AK.KLU AK.KNK AK.KTH AK.MCK AK.NEA2 AK.RC01 AK.SAW AK.SCM AK.SKN AK.TRF AK.WRH AT.PMR AT.TTA TA.I21K TA.I23K TA.L19K TA.M19K TA.M20K TA.N19K Filtering commands used: cut o DIST/3.6 -30 o DIST/3.6 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 1.60e+22 dyne-cm Mw = 4.07 Z = 102 km Plane Strike Dip Rake NP1 349 58 138 NP2 105 55 40 Principal Axes: Axis Value Plunge Azimuth T 1.60e+22 51 315 N 0.00e+00 39 139 P -1.60e+22 2 48 Moment Tensor: (dyne-cm) Component Value Mxx -4.01e+21 Mxy -1.11e+22 Mxz 5.23e+21 Myy -5.68e+21 Myz -5.89e+21 Mzz 9.68e+21 #####--------- ###########----------- ################----------- ##################---------- P #####################--------- - #######################------------- ########### ###########------------- ############ T ############------------- ############ ############------------- --###########################------------- ---##########################------------- -----########################------------- -------######################------------- ---------####################----------- ------------#################----------# ----------------###########-------#### --------------------------########## -------------------------######### ----------------------######## ---------------------####### -----------------##### ------------## Global CMT Convention Moment Tensor: R T P 9.68e+21 5.23e+21 5.89e+21 5.23e+21 -4.01e+21 1.11e+22 5.89e+21 1.11e+22 -5.68e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20161022010633/index.html |
STK = 105 DIP = 55 RAKE = 40 MW = 4.07 HS = 102.0
The NDK file is 20161022010633.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.6 -30 o DIST/3.6 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 170 60 -30 3.26 0.3508 WVFGRD96 4.0 0 45 -5 3.36 0.3536 WVFGRD96 6.0 275 90 -50 3.39 0.3919 WVFGRD96 8.0 320 40 -85 3.53 0.4288 WVFGRD96 10.0 155 50 -65 3.51 0.4221 WVFGRD96 12.0 105 65 45 3.48 0.4276 WVFGRD96 14.0 100 80 40 3.49 0.4351 WVFGRD96 16.0 100 80 40 3.51 0.4415 WVFGRD96 18.0 100 80 40 3.53 0.4451 WVFGRD96 20.0 100 80 40 3.55 0.4460 WVFGRD96 22.0 100 80 40 3.58 0.4427 WVFGRD96 24.0 275 80 -45 3.60 0.4395 WVFGRD96 26.0 275 80 -45 3.62 0.4432 WVFGRD96 28.0 275 80 -45 3.65 0.4446 WVFGRD96 30.0 270 80 -45 3.67 0.4467 WVFGRD96 32.0 270 80 -45 3.69 0.4504 WVFGRD96 34.0 270 80 -45 3.71 0.4529 WVFGRD96 36.0 270 75 -45 3.74 0.4563 WVFGRD96 38.0 275 85 -35 3.75 0.4683 WVFGRD96 40.0 95 90 45 3.84 0.4816 WVFGRD96 42.0 95 80 40 3.85 0.4951 WVFGRD96 44.0 95 75 40 3.87 0.5124 WVFGRD96 46.0 95 75 40 3.88 0.5249 WVFGRD96 48.0 100 70 40 3.89 0.5379 WVFGRD96 50.0 100 60 40 3.91 0.5535 WVFGRD96 52.0 105 55 45 3.92 0.5696 WVFGRD96 54.0 105 55 45 3.94 0.5851 WVFGRD96 56.0 100 55 40 3.95 0.6001 WVFGRD96 58.0 100 55 40 3.96 0.6135 WVFGRD96 60.0 100 55 40 3.97 0.6238 WVFGRD96 62.0 100 55 40 3.97 0.6321 WVFGRD96 64.0 100 55 35 3.98 0.6388 WVFGRD96 66.0 100 50 35 3.99 0.6483 WVFGRD96 68.0 100 50 35 4.00 0.6575 WVFGRD96 70.0 100 50 35 4.00 0.6662 WVFGRD96 72.0 100 50 35 4.01 0.6733 WVFGRD96 74.0 100 50 35 4.01 0.6827 WVFGRD96 76.0 100 55 40 4.02 0.6933 WVFGRD96 78.0 100 55 40 4.02 0.7036 WVFGRD96 80.0 100 55 40 4.03 0.7117 WVFGRD96 82.0 110 50 40 4.03 0.7193 WVFGRD96 84.0 110 50 40 4.04 0.7300 WVFGRD96 86.0 110 50 40 4.04 0.7381 WVFGRD96 88.0 110 50 40 4.05 0.7426 WVFGRD96 90.0 110 50 40 4.05 0.7494 WVFGRD96 92.0 110 50 40 4.05 0.7548 WVFGRD96 94.0 105 55 40 4.06 0.7561 WVFGRD96 96.0 105 55 40 4.06 0.7611 WVFGRD96 98.0 105 55 40 4.07 0.7637 WVFGRD96 100.0 105 55 40 4.07 0.7640 WVFGRD96 102.0 105 55 40 4.07 0.7668 WVFGRD96 104.0 105 55 40 4.08 0.7647 WVFGRD96 106.0 105 50 35 4.08 0.7656 WVFGRD96 108.0 105 50 35 4.08 0.7640 WVFGRD96 110.0 105 50 35 4.08 0.7623 WVFGRD96 112.0 105 50 35 4.08 0.7595 WVFGRD96 114.0 105 50 35 4.09 0.7559 WVFGRD96 116.0 105 50 35 4.09 0.7533 WVFGRD96 118.0 105 50 35 4.09 0.7490
The best solution is
WVFGRD96 102.0 105 55 40 4.07 0.7668
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.6 -30 o DIST/3.6 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00