The ANSS event ID is nm60132667 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nm60132667/executive.
2016/09/09 13:45:37 36.453 -89.535 10.3 3.44 Tennessee
USGS/SLU Moment Tensor Solution
ENS 2016/09/09 13:45:37:0 36.45 -89.54 10.3 3.4 Tennessee
Stations used:
AG.FCAR AG.HHAR AG.LCAR AG.WHAR ET.SWET IU.CCM IU.WCI
IU.WVT N4.R40B N4.S44A N4.T45B N4.T47A N4.U49A N4.V48A
N4.W45B N4.X48A N4.Y49A N4.Z47B NM.CGM3 NM.CLTN NM.FFIL
NM.GNAR NM.HALT NM.LNXT NM.MGMO NM.MPH NM.PARM NM.PEBM
NM.PLAL NM.PVMO NM.SIUC NM.SLM NM.UTMT
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.15 n 3
Best Fitting Double Couple
Mo = 1.82e+21 dyne-cm
Mw = 3.44
Z = 10 km
Plane Strike Dip Rake
NP1 15 87 -99
NP2 265 10 -20
Principal Axes:
Axis Value Plunge Azimuth
T 1.82e+21 41 113
N 0.00e+00 9 15
P -1.82e+21 48 275
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.60e+20
Mxy -3.11e+20
Mxz -4.36e+20
Myy 5.32e+19
Myz 1.73e+21
Mzz -2.13e+20
############--
####------------##----
###----------------######---
##-----------------##########-
##-------------------############-
#--------------------##############-
#---------------------###############-
#----------------------################-
----------------------##################
#-------- -----------##################-
--------- P ----------####################
--------- ----------####################
---------------------########## ########
--------------------########## T #######
-------------------########### #######
------------------####################
----------------####################
--------------####################
------------##################
----------##################
-------###############
--############
Global CMT Convention Moment Tensor:
R T P
-2.13e+20 -4.36e+20 -1.73e+21
-4.36e+20 1.60e+20 3.11e+20
-1.73e+21 3.11e+20 5.32e+19
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160909134537/index.html
|
STK = 265
DIP = 10
RAKE = -20
MW = 3.44
HS = 10.0
The NDK file is 20160909134537.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2016/09/09 13:45:37:0 36.45 -89.54 10.3 3.4 Tennessee
Stations used:
AG.FCAR AG.HHAR AG.LCAR AG.WHAR ET.SWET IU.CCM IU.WCI
IU.WVT N4.R40B N4.S44A N4.T45B N4.T47A N4.U49A N4.V48A
N4.W45B N4.X48A N4.Y49A N4.Z47B NM.CGM3 NM.CLTN NM.FFIL
NM.GNAR NM.HALT NM.LNXT NM.MGMO NM.MPH NM.PARM NM.PEBM
NM.PLAL NM.PVMO NM.SIUC NM.SLM NM.UTMT
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.15 n 3
Best Fitting Double Couple
Mo = 1.82e+21 dyne-cm
Mw = 3.44
Z = 10 km
Plane Strike Dip Rake
NP1 15 87 -99
NP2 265 10 -20
Principal Axes:
Axis Value Plunge Azimuth
T 1.82e+21 41 113
N 0.00e+00 9 15
P -1.82e+21 48 275
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.60e+20
Mxy -3.11e+20
Mxz -4.36e+20
Myy 5.32e+19
Myz 1.73e+21
Mzz -2.13e+20
############--
####------------##----
###----------------######---
##-----------------##########-
##-------------------############-
#--------------------##############-
#---------------------###############-
#----------------------################-
----------------------##################
#-------- -----------##################-
--------- P ----------####################
--------- ----------####################
---------------------########## ########
--------------------########## T #######
-------------------########### #######
------------------####################
----------------####################
--------------####################
------------##################
----------##################
-------###############
--############
Global CMT Convention Moment Tensor:
R T P
-2.13e+20 -4.36e+20 -1.73e+21
-4.36e+20 1.60e+20 3.11e+20
-1.73e+21 3.11e+20 5.32e+19
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160909134537/index.html
|
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.15 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 25 35 -90 3.38 0.4565
WVFGRD96 2.0 250 20 -40 3.38 0.3673
WVFGRD96 3.0 265 20 -25 3.34 0.4174
WVFGRD96 4.0 255 15 -35 3.33 0.4631
WVFGRD96 5.0 260 15 -30 3.34 0.5016
WVFGRD96 6.0 250 15 -40 3.36 0.5340
WVFGRD96 7.0 250 15 -35 3.37 0.5596
WVFGRD96 8.0 255 15 -30 3.39 0.5768
WVFGRD96 9.0 255 10 -30 3.40 0.5866
WVFGRD96 10.0 265 10 -20 3.44 0.5908
WVFGRD96 11.0 285 5 0 3.45 0.5871
WVFGRD96 12.0 295 15 10 3.47 0.5806
WVFGRD96 13.0 305 15 25 3.48 0.5712
WVFGRD96 14.0 305 15 25 3.50 0.5590
WVFGRD96 15.0 320 15 40 3.51 0.5446
WVFGRD96 16.0 325 15 45 3.52 0.5292
WVFGRD96 17.0 325 20 45 3.53 0.5117
WVFGRD96 18.0 325 20 45 3.54 0.4939
WVFGRD96 19.0 330 20 50 3.55 0.4764
WVFGRD96 20.0 325 20 45 3.59 0.4601
WVFGRD96 21.0 325 25 45 3.60 0.4414
WVFGRD96 22.0 325 25 45 3.60 0.4242
WVFGRD96 23.0 320 25 40 3.61 0.4075
WVFGRD96 24.0 335 20 50 3.62 0.3911
WVFGRD96 25.0 320 30 40 3.63 0.3749
WVFGRD96 26.0 340 10 55 3.62 0.3593
WVFGRD96 27.0 345 10 60 3.63 0.3463
WVFGRD96 28.0 330 10 45 3.64 0.3341
WVFGRD96 29.0 345 10 55 3.65 0.3222
The best solution is
WVFGRD96 10.0 265 10 -20 3.44 0.5908
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.15 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00