The ANSS event ID is ak016b9dz3vp and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak016b9dz3vp/executive.
2016/09/01 12:27:41 61.299 -152.165 131.7 4.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2016/09/01 12:27:41:0 61.30 -152.16 131.7 4.5 Alaska Stations used: AK.BRSE AK.CHUM AK.SLK AK.WAT1 AK.WAT6 AK.WAT7 AV.AUJA AV.NCT AV.RDDF AV.RDSO AV.RDWB AV.RED AV.SPNN TA.K24K TA.L20K TA.M23K TA.N16K TA.N20K TA.O16K TA.O17K TA.O18K TA.O20K TA.P16K TA.Q16K TA.Q20K XV.FAPT XV.FPAP XV.FTGH Filtering commands used: cut a -20 a 100 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 5.96e+22 dyne-cm Mw = 4.45 Z = 128 km Plane Strike Dip Rake NP1 307 51 124 NP2 80 50 55 Principal Axes: Axis Value Plunge Azimuth T 5.96e+22 64 283 N 0.00e+00 26 104 P -5.96e+22 1 14 Moment Tensor: (dyne-cm) Component Value Mxx -5.56e+22 Mxy -1.64e+22 Mxz 4.53e+21 Myy 7.50e+21 Myz -2.31e+22 Mzz 4.81e+22 ----------- P --------------- ---- ---------------------------- ------------------------------ ###############------------------- ####################---------------- ########################-------------- ############################------------ #############################----------- ############# ################---------# ############# T #################-------## ############# ###################----### ####################################-##### -#################################-##### ---############################-----#### -----#####################---------### -----------#######-----------------# ---------------------------------- ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 4.81e+22 4.53e+21 2.31e+22 4.53e+21 -5.56e+22 1.64e+22 2.31e+22 1.64e+22 7.50e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160901122741/index.html |
STK = 80 DIP = 50 RAKE = 55 MW = 4.45 HS = 128.0
The NDK file is 20160901122741.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -20 a 100 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 95 55 -85 3.59 0.1614 WVFGRD96 4.0 335 30 -15 3.67 0.1614 WVFGRD96 6.0 335 35 -10 3.70 0.1913 WVFGRD96 8.0 340 35 0 3.78 0.1974 WVFGRD96 10.0 -5 35 30 3.82 0.2035 WVFGRD96 12.0 195 40 -35 3.82 0.2149 WVFGRD96 14.0 190 40 -35 3.86 0.2315 WVFGRD96 16.0 190 40 -35 3.90 0.2399 WVFGRD96 18.0 195 40 -25 3.92 0.2405 WVFGRD96 20.0 195 35 -25 3.93 0.2365 WVFGRD96 22.0 205 35 -10 3.95 0.2288 WVFGRD96 24.0 210 35 0 3.97 0.2197 WVFGRD96 26.0 215 35 10 3.98 0.2098 WVFGRD96 28.0 200 35 -15 4.03 0.2015 WVFGRD96 30.0 205 35 -5 4.04 0.1954 WVFGRD96 32.0 210 35 0 4.05 0.1901 WVFGRD96 34.0 210 35 0 4.06 0.1878 WVFGRD96 36.0 250 80 15 4.11 0.1876 WVFGRD96 38.0 65 50 50 4.06 0.1946 WVFGRD96 40.0 155 70 -30 4.20 0.2152 WVFGRD96 42.0 155 70 -30 4.24 0.2217 WVFGRD96 44.0 155 70 -30 4.26 0.2255 WVFGRD96 46.0 150 65 -40 4.26 0.2304 WVFGRD96 48.0 145 60 -45 4.27 0.2335 WVFGRD96 50.0 145 60 -40 4.29 0.2344 WVFGRD96 52.0 90 65 70 4.26 0.2379 WVFGRD96 54.0 280 25 105 4.27 0.2528 WVFGRD96 56.0 90 65 70 4.29 0.2760 WVFGRD96 58.0 245 35 55 4.31 0.2949 WVFGRD96 60.0 245 35 55 4.32 0.3140 WVFGRD96 62.0 90 65 70 4.33 0.3344 WVFGRD96 64.0 85 65 65 4.35 0.3516 WVFGRD96 66.0 85 65 65 4.36 0.3686 WVFGRD96 68.0 85 65 65 4.36 0.3836 WVFGRD96 70.0 85 65 65 4.37 0.3973 WVFGRD96 72.0 85 65 65 4.38 0.4092 WVFGRD96 74.0 85 65 65 4.38 0.4202 WVFGRD96 76.0 80 65 60 4.40 0.4310 WVFGRD96 78.0 80 65 60 4.40 0.4402 WVFGRD96 80.0 80 65 60 4.41 0.4491 WVFGRD96 82.0 80 65 60 4.41 0.4564 WVFGRD96 84.0 80 60 60 4.41 0.4636 WVFGRD96 86.0 80 60 60 4.41 0.4706 WVFGRD96 88.0 80 60 60 4.41 0.4772 WVFGRD96 90.0 80 60 60 4.42 0.4829 WVFGRD96 92.0 80 60 55 4.43 0.4876 WVFGRD96 94.0 80 60 55 4.43 0.4918 WVFGRD96 96.0 80 55 60 4.42 0.4957 WVFGRD96 98.0 80 55 60 4.42 0.5000 WVFGRD96 100.0 80 55 60 4.42 0.5032 WVFGRD96 102.0 80 55 60 4.43 0.5057 WVFGRD96 104.0 80 55 60 4.43 0.5086 WVFGRD96 106.0 80 55 60 4.43 0.5116 WVFGRD96 108.0 80 55 60 4.43 0.5146 WVFGRD96 110.0 80 55 55 4.44 0.5165 WVFGRD96 112.0 75 55 55 4.44 0.5174 WVFGRD96 114.0 75 55 55 4.45 0.5188 WVFGRD96 116.0 75 55 55 4.45 0.5202 WVFGRD96 118.0 75 55 55 4.45 0.5219 WVFGRD96 120.0 75 55 55 4.45 0.5234 WVFGRD96 122.0 80 50 55 4.45 0.5234 WVFGRD96 124.0 80 50 55 4.45 0.5237 WVFGRD96 126.0 80 50 55 4.45 0.5251 WVFGRD96 128.0 80 50 55 4.45 0.5253 WVFGRD96 130.0 80 50 55 4.45 0.5243 WVFGRD96 132.0 75 50 50 4.46 0.5248 WVFGRD96 134.0 75 50 50 4.46 0.5241 WVFGRD96 136.0 75 50 50 4.46 0.5238 WVFGRD96 138.0 75 50 50 4.47 0.5232 WVFGRD96 140.0 75 50 50 4.47 0.5217 WVFGRD96 142.0 75 50 50 4.47 0.5213 WVFGRD96 144.0 75 50 50 4.47 0.5194 WVFGRD96 146.0 75 50 50 4.47 0.5184 WVFGRD96 148.0 75 50 50 4.47 0.5170
The best solution is
WVFGRD96 128.0 80 50 55 4.45 0.5253
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -20 a 100 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00