The ANSS event ID is us20006umx and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us20006umx/executive.
2016/08/27 20:47:47 43.223 -110.359 12.3 4.8 Wyoming
USGS/SLU Moment Tensor Solution
ENS 2016/08/27 20:47:47:0 43.22 -110.36 12.3 4.8 Wyoming
Stations used:
IW.FLWY IW.FXWY IW.IMW IW.MOOW IW.REDW IW.SNOW IW.TPAW
TA.H17A US.AHID US.BOZ US.BW06 US.DUG US.HLID US.HWUT
US.LKWY US.RLMT UU.BGU UU.CTU UU.HVU UU.JLU UU.MPU UU.NLU
UU.TCU UU.TMU WY.YHL WY.YMR WY.YNR WY.YPP WY.YUF
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 1.93e+23 dyne-cm
Mw = 4.79
Z = 14 km
Plane Strike Dip Rake
NP1 348 66 -123
NP2 225 40 -40
Principal Axes:
Axis Value Plunge Azimuth
T 1.93e+23 14 101
N 0.00e+00 29 3
P -1.93e+23 56 214
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.39e+22
Mxy -6.10e+22
Mxz 6.48e+22
Myy 1.56e+23
Myz 9.52e+22
Mzz -1.22e+23
####----------
##########------------
##############----#######---
#############---##############
############-------###############
###########----------###############
##########-------------###############
#########----------------###############
########-----------------###############
########-------------------###############
#######--------------------###############
######---------------------########## ##
######----------------------######### T ##
####---------- ----------######### #
####---------- P ----------#############
###---------- ----------############
##-----------------------###########
#-----------------------##########
----------------------########
--------------------########
-----------------#####
------------##
Global CMT Convention Moment Tensor:
R T P
-1.22e+23 6.48e+22 -9.52e+22
6.48e+22 -3.39e+22 6.10e+22
-9.52e+22 6.10e+22 1.56e+23
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160827204747/index.html
|
STK = 225
DIP = 40
RAKE = -40
MW = 4.79
HS = 14.0
The NDK file is 20160827204747.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2016/08/27 20:47:47:0 43.22 -110.36 12.3 4.8 Wyoming
Stations used:
IW.FLWY IW.FXWY IW.IMW IW.MOOW IW.REDW IW.SNOW IW.TPAW
TA.H17A US.AHID US.BOZ US.BW06 US.DUG US.HLID US.HWUT
US.LKWY US.RLMT UU.BGU UU.CTU UU.HVU UU.JLU UU.MPU UU.NLU
UU.TCU UU.TMU WY.YHL WY.YMR WY.YNR WY.YPP WY.YUF
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 1.93e+23 dyne-cm
Mw = 4.79
Z = 14 km
Plane Strike Dip Rake
NP1 348 66 -123
NP2 225 40 -40
Principal Axes:
Axis Value Plunge Azimuth
T 1.93e+23 14 101
N 0.00e+00 29 3
P -1.93e+23 56 214
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.39e+22
Mxy -6.10e+22
Mxz 6.48e+22
Myy 1.56e+23
Myz 9.52e+22
Mzz -1.22e+23
####----------
##########------------
##############----#######---
#############---##############
############-------###############
###########----------###############
##########-------------###############
#########----------------###############
########-----------------###############
########-------------------###############
#######--------------------###############
######---------------------########## ##
######----------------------######### T ##
####---------- ----------######### #
####---------- P ----------#############
###---------- ----------############
##-----------------------###########
#-----------------------##########
----------------------########
--------------------########
-----------------#####
------------##
Global CMT Convention Moment Tensor:
R T P
-1.22e+23 6.48e+22 -9.52e+22
6.48e+22 -3.39e+22 6.10e+22
-9.52e+22 6.10e+22 1.56e+23
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160827204747/index.html
|
Regional Moment Tensor (Mwr) Moment 1.974e+16 N-m Magnitude 4.8 Mwr Depth 14.0 km Percent DC 92 % Half Duration – Catalog US Data Source US1 Contributor US1 Nodal Planes Plane Strike Dip Rake NP1 226 50 -28 NP2 335 69 -137 Principal Axes Axis Value Plunge Azimuth T 2.012e+16 N-m 12 96 N -0.079e+16 N-m 43 356 P -1.934e+16 N-m 45 198 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 230 50 90 4.29 0.2295
WVFGRD96 2.0 50 35 90 4.45 0.2872
WVFGRD96 3.0 105 40 20 4.49 0.2619
WVFGRD96 4.0 105 35 20 4.53 0.3279
WVFGRD96 5.0 105 30 15 4.55 0.3827
WVFGRD96 6.0 105 35 15 4.57 0.4272
WVFGRD96 7.0 105 35 15 4.58 0.4608
WVFGRD96 8.0 210 35 -55 4.68 0.5086
WVFGRD96 9.0 215 40 -55 4.70 0.5838
WVFGRD96 10.0 215 40 -55 4.72 0.6375
WVFGRD96 11.0 220 40 -50 4.74 0.6746
WVFGRD96 12.0 220 40 -50 4.76 0.6979
WVFGRD96 13.0 220 40 -45 4.78 0.7101
WVFGRD96 14.0 225 40 -40 4.79 0.7127
WVFGRD96 15.0 225 40 -40 4.80 0.7086
WVFGRD96 16.0 225 40 -40 4.81 0.6986
WVFGRD96 17.0 230 40 -35 4.82 0.6855
WVFGRD96 18.0 230 40 -35 4.83 0.6686
WVFGRD96 19.0 230 40 -35 4.84 0.6486
WVFGRD96 20.0 230 40 -35 4.84 0.6271
WVFGRD96 21.0 230 40 -30 4.86 0.6040
WVFGRD96 22.0 225 35 -35 4.87 0.5788
WVFGRD96 23.0 230 35 -30 4.87 0.5533
WVFGRD96 24.0 230 35 -30 4.87 0.5275
WVFGRD96 25.0 230 35 -30 4.88 0.5013
WVFGRD96 26.0 230 35 -30 4.88 0.4750
WVFGRD96 27.0 255 50 25 4.87 0.4597
WVFGRD96 28.0 260 45 30 4.88 0.4457
WVFGRD96 29.0 150 50 -20 4.85 0.4302
The best solution is
WVFGRD96 14.0 225 40 -40 4.79 0.7127
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00