The ANSS event ID is ak016anz0nt3 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak016anz0nt3/executive.
2016/08/19 17:36:28 61.600 -146.336 23.9 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2016/08/19 17:36:28:0 61.60 -146.34 23.9 4.3 Alaska Stations used: AK.BERG AK.BMR AK.CUT AK.DHY AK.DIV AK.EYAK AK.FID AK.GHO AK.GLI AK.HIN AK.HMT AK.KLU AK.KNK AK.MCAR AK.PAX AK.PWL AK.RAG AK.RC01 AK.SAW AK.SCM AK.TGL AT.PMR TA.M24K TA.M26K TA.N25K Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 3.55e+22 dyne-cm Mw = 4.30 Z = 41 km Plane Strike Dip Rake NP1 50 70 -70 NP2 183 28 -133 Principal Axes: Axis Value Plunge Azimuth T 3.55e+22 22 125 N 0.00e+00 19 223 P -3.55e+22 60 349 Moment Tensor: (dyne-cm) Component Value Mxx 1.35e+21 Mxy -1.25e+22 Mxz -2.22e+22 Myy 2.01e+22 Myz 1.32e+22 Mzz -2.14e+22 ####---------- #####----------------- ######---------------------- #####------------------------- ######---------------------------# #####---------- ---------------### ######---------- P --------------##### ######----------- -------------####### #####--------------------------######### ######-------------------------########### ######-----------------------############# ######----------------------############## ######--------------------################ #####-----------------################## ######--------------#################### #####-----------############### #### #####-------################## T ### #####--###################### ## ----########################## -----####################### ----################## ---########### Global CMT Convention Moment Tensor: R T P -2.14e+22 -2.22e+22 -1.32e+22 -2.22e+22 1.35e+21 1.25e+22 -1.32e+22 1.25e+22 2.01e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160819173628/index.html |
STK = 50 DIP = 70 RAKE = -70 MW = 4.30 HS = 41.0
The NDK file is 20160819173628.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2016/08/19 17:36:28:0 61.60 -146.34 23.9 4.3 Alaska Stations used: AK.BERG AK.BMR AK.CUT AK.DHY AK.DIV AK.EYAK AK.FID AK.GHO AK.GLI AK.HIN AK.HMT AK.KLU AK.KNK AK.MCAR AK.PAX AK.PWL AK.RAG AK.RC01 AK.SAW AK.SCM AK.TGL AT.PMR TA.M24K TA.M26K TA.N25K Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 3.55e+22 dyne-cm Mw = 4.30 Z = 41 km Plane Strike Dip Rake NP1 50 70 -70 NP2 183 28 -133 Principal Axes: Axis Value Plunge Azimuth T 3.55e+22 22 125 N 0.00e+00 19 223 P -3.55e+22 60 349 Moment Tensor: (dyne-cm) Component Value Mxx 1.35e+21 Mxy -1.25e+22 Mxz -2.22e+22 Myy 2.01e+22 Myz 1.32e+22 Mzz -2.14e+22 ####---------- #####----------------- ######---------------------- #####------------------------- ######---------------------------# #####---------- ---------------### ######---------- P --------------##### ######----------- -------------####### #####--------------------------######### ######-------------------------########### ######-----------------------############# ######----------------------############## ######--------------------################ #####-----------------################## ######--------------#################### #####-----------############### #### #####-------################## T ### #####--###################### ## ----########################## -----####################### ----################## ---########### Global CMT Convention Moment Tensor: R T P -2.14e+22 -2.22e+22 -1.32e+22 -2.22e+22 1.35e+21 1.25e+22 -1.32e+22 1.25e+22 2.01e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160819173628/index.html |
Regional Moment Tensor (Mwr) Moment 4.051e+15 N-m Magnitude 4.3 Mwr Depth 43.0 km Percent DC 82 % Half Duration – Catalog US Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 47 64 -84 NP2 213 27 -103 Principal Axes Axis Value Plunge Azimuth T 4.232e+15 N-m 19 132 N -0.391e+15 N-m 6 224 P -3.841e+15 N-m 70 330 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 220 45 90 3.50 0.1923 WVFGRD96 2.0 35 45 -95 3.64 0.2681 WVFGRD96 3.0 30 45 -100 3.71 0.2834 WVFGRD96 4.0 225 50 -80 3.73 0.2707 WVFGRD96 5.0 250 55 -35 3.69 0.2641 WVFGRD96 6.0 210 80 55 3.70 0.2895 WVFGRD96 7.0 215 75 55 3.72 0.3115 WVFGRD96 8.0 225 75 65 3.81 0.3319 WVFGRD96 9.0 220 75 60 3.81 0.3495 WVFGRD96 10.0 220 75 60 3.82 0.3649 WVFGRD96 11.0 220 75 60 3.84 0.3769 WVFGRD96 12.0 215 75 60 3.84 0.3874 WVFGRD96 13.0 215 75 60 3.85 0.3963 WVFGRD96 14.0 300 40 20 3.87 0.4048 WVFGRD96 15.0 300 40 20 3.88 0.4134 WVFGRD96 16.0 300 40 20 3.89 0.4215 WVFGRD96 17.0 300 40 20 3.91 0.4289 WVFGRD96 18.0 280 35 -25 3.92 0.4409 WVFGRD96 19.0 275 35 -30 3.93 0.4501 WVFGRD96 20.0 270 35 -30 3.94 0.4591 WVFGRD96 21.0 280 35 -25 3.96 0.4671 WVFGRD96 22.0 270 30 -30 3.97 0.4771 WVFGRD96 23.0 270 30 -30 3.98 0.4862 WVFGRD96 24.0 265 30 -40 4.00 0.4956 WVFGRD96 25.0 265 30 -40 4.01 0.5044 WVFGRD96 26.0 65 75 -60 4.05 0.5220 WVFGRD96 27.0 65 75 -55 4.07 0.5361 WVFGRD96 28.0 60 70 -60 4.08 0.5494 WVFGRD96 29.0 60 70 -60 4.09 0.5630 WVFGRD96 30.0 60 70 -60 4.10 0.5751 WVFGRD96 31.0 60 70 -60 4.11 0.5868 WVFGRD96 32.0 60 70 -60 4.12 0.5968 WVFGRD96 33.0 60 70 -60 4.13 0.6056 WVFGRD96 34.0 60 70 -60 4.14 0.6113 WVFGRD96 35.0 60 70 -55 4.15 0.6162 WVFGRD96 36.0 60 70 -55 4.16 0.6187 WVFGRD96 37.0 55 70 -65 4.16 0.6198 WVFGRD96 38.0 55 70 -65 4.17 0.6227 WVFGRD96 39.0 55 70 -65 4.17 0.6241 WVFGRD96 40.0 50 70 -70 4.29 0.6453 WVFGRD96 41.0 50 70 -70 4.30 0.6454 WVFGRD96 42.0 50 70 -70 4.31 0.6432 WVFGRD96 43.0 50 70 -70 4.32 0.6417 WVFGRD96 44.0 50 70 -70 4.32 0.6385 WVFGRD96 45.0 45 65 -75 4.33 0.6350 WVFGRD96 46.0 45 65 -75 4.34 0.6337 WVFGRD96 47.0 45 65 -75 4.34 0.6313 WVFGRD96 48.0 55 70 -60 4.35 0.6287 WVFGRD96 49.0 45 65 -75 4.35 0.6269 WVFGRD96 50.0 55 70 -60 4.36 0.6244 WVFGRD96 51.0 50 70 -65 4.37 0.6213 WVFGRD96 52.0 50 70 -65 4.37 0.6207 WVFGRD96 53.0 50 70 -65 4.38 0.6185 WVFGRD96 54.0 45 65 -75 4.38 0.6179 WVFGRD96 55.0 45 65 -75 4.38 0.6162 WVFGRD96 56.0 45 65 -75 4.39 0.6142 WVFGRD96 57.0 45 65 -75 4.39 0.6114 WVFGRD96 58.0 45 65 -75 4.39 0.6085 WVFGRD96 59.0 45 65 -75 4.39 0.6052 WVFGRD96 60.0 45 65 -75 4.40 0.6010 WVFGRD96 61.0 45 65 -75 4.40 0.5964 WVFGRD96 62.0 45 65 -75 4.40 0.5918 WVFGRD96 63.0 45 65 -75 4.40 0.5864 WVFGRD96 64.0 45 65 -75 4.40 0.5808 WVFGRD96 65.0 45 65 -75 4.40 0.5739 WVFGRD96 66.0 45 65 -75 4.40 0.5678 WVFGRD96 67.0 50 70 -70 4.41 0.5606 WVFGRD96 68.0 50 70 -70 4.41 0.5540 WVFGRD96 69.0 45 70 -80 4.41 0.5477 WVFGRD96 70.0 45 75 -80 4.42 0.5425 WVFGRD96 71.0 45 75 -80 4.42 0.5397 WVFGRD96 72.0 45 75 -80 4.42 0.5354 WVFGRD96 73.0 45 75 -80 4.42 0.5322 WVFGRD96 74.0 45 75 -80 4.42 0.5285 WVFGRD96 75.0 45 75 -80 4.42 0.5241 WVFGRD96 76.0 260 20 -45 4.42 0.5212 WVFGRD96 77.0 260 20 -45 4.43 0.5182 WVFGRD96 78.0 260 20 -45 4.43 0.5156 WVFGRD96 79.0 260 20 -45 4.43 0.5106 WVFGRD96 80.0 265 25 -40 4.43 0.5047 WVFGRD96 81.0 265 25 -40 4.43 0.5002 WVFGRD96 82.0 265 25 -40 4.43 0.4931 WVFGRD96 83.0 265 25 -40 4.43 0.4856 WVFGRD96 84.0 265 25 -40 4.43 0.4776 WVFGRD96 85.0 260 25 -45 4.43 0.4689 WVFGRD96 86.0 260 25 -45 4.43 0.4602 WVFGRD96 87.0 265 25 -35 4.43 0.4528 WVFGRD96 88.0 270 25 -30 4.43 0.4502 WVFGRD96 89.0 270 25 -30 4.43 0.4477 WVFGRD96 90.0 270 25 -30 4.43 0.4464 WVFGRD96 91.0 270 25 -30 4.43 0.4441 WVFGRD96 92.0 270 25 -30 4.44 0.4404 WVFGRD96 93.0 270 25 -30 4.44 0.4366 WVFGRD96 94.0 275 25 -25 4.44 0.4321 WVFGRD96 95.0 275 25 -25 4.44 0.4256 WVFGRD96 96.0 280 25 -25 4.44 0.4194 WVFGRD96 97.0 285 25 -20 4.44 0.4127 WVFGRD96 98.0 285 25 -20 4.44 0.4046 WVFGRD96 99.0 290 25 -15 4.44 0.3963
The best solution is
WVFGRD96 41.0 50 70 -70 4.30 0.6454
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00