The ANSS event ID is ak0169xh1e4m and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0169xh1e4m/executive.
2016/08/03 15:04:32 60.163 -139.525 10.2 3.9 Alaska
USGS/SLU Moment Tensor Solution ENS 2016/08/03 15:04:32:0 60.16 -139.52 10.2 3.9 Alaska Stations used: AK.BARN AK.BERG AK.BESE AK.CRQ AK.CTG AK.GLB AK.GLI AK.GRNC AK.ISLE AK.JIS AK.KAI AK.KLU AK.LOGN AK.MCAR AK.MESA AK.PIN AK.SSP AK.SUCK AK.TABL AK.TGL AK.VRDI AK.WAX AK.YAH AT.MENT AT.SIT AT.SKAG AT.YKU2 CN.DAWY CN.HYT NY.FARO NY.MAYO TA.L26K TA.L27K TA.M24K TA.M26K TA.M27K TA.M30M TA.M31M TA.N25K TA.N31M TA.P29M TA.P33M Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 1.10e+22 dyne-cm Mw = 3.96 Z = 14 km Plane Strike Dip Rake NP1 73 63 121 NP2 200 40 45 Principal Axes: Axis Value Plunge Azimuth T 1.10e+22 60 28 N 0.00e+00 27 237 P -1.10e+22 13 141 Moment Tensor: (dyne-cm) Component Value Mxx -4.10e+21 Mxy 6.27e+21 Mxz 6.04e+21 Myy -3.54e+21 Myz 7.66e+20 Mzz 7.64e+21 -------------# -----------########### -----------################# ----------#################### ----------######################## ---------########################### ---------############ ############## ---------############# T ############### --------############## ##############- ---------#############################---- --------#############################----- --------##########################-------- --------########################---------- -------####################------------- #------###############------------------ ######-#####-------------------------- #####------------------------------- #####---------------------- ---- ####--------------------- P -- ####-------------------- - ##-------------------- -------------- Global CMT Convention Moment Tensor: R T P 7.64e+21 6.04e+21 -7.66e+20 6.04e+21 -4.10e+21 -6.27e+21 -7.66e+20 -6.27e+21 -3.54e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160803150432/index.html |
STK = 200 DIP = 40 RAKE = 45 MW = 3.96 HS = 14.0
The NDK file is 20160803150432.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2016/08/03 15:04:32:0 60.16 -139.52 10.2 3.9 Alaska Stations used: AK.BARN AK.BERG AK.BESE AK.CRQ AK.CTG AK.GLB AK.GLI AK.GRNC AK.ISLE AK.JIS AK.KAI AK.KLU AK.LOGN AK.MCAR AK.MESA AK.PIN AK.SSP AK.SUCK AK.TABL AK.TGL AK.VRDI AK.WAX AK.YAH AT.MENT AT.SIT AT.SKAG AT.YKU2 CN.DAWY CN.HYT NY.FARO NY.MAYO TA.L26K TA.L27K TA.M24K TA.M26K TA.M27K TA.M30M TA.M31M TA.N25K TA.N31M TA.P29M TA.P33M Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 1.10e+22 dyne-cm Mw = 3.96 Z = 14 km Plane Strike Dip Rake NP1 73 63 121 NP2 200 40 45 Principal Axes: Axis Value Plunge Azimuth T 1.10e+22 60 28 N 0.00e+00 27 237 P -1.10e+22 13 141 Moment Tensor: (dyne-cm) Component Value Mxx -4.10e+21 Mxy 6.27e+21 Mxz 6.04e+21 Myy -3.54e+21 Myz 7.66e+20 Mzz 7.64e+21 -------------# -----------########### -----------################# ----------#################### ----------######################## ---------########################### ---------############ ############## ---------############# T ############### --------############## ##############- ---------#############################---- --------#############################----- --------##########################-------- --------########################---------- -------####################------------- #------###############------------------ ######-#####-------------------------- #####------------------------------- #####---------------------- ---- ####--------------------- P -- ####-------------------- - ##-------------------- -------------- Global CMT Convention Moment Tensor: R T P 7.64e+21 6.04e+21 -7.66e+20 6.04e+21 -4.10e+21 -6.27e+21 -7.66e+20 -6.27e+21 -3.54e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160803150432/index.html |
Regional Moment Tensor (Mwr) Moment 1.012e+15 N-m Magnitude 3.9 Mwr Depth 14.0 km Percent DC 88 % Half Duration – Catalog US Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 229 41 85 NP2 55 49 94 Principal Axes Axis Value Plunge Azimuth T 0.979e+15 N-m 85 356 N 0.063e+15 N-m 3 232 P -1.042e+15 N-m 4 142 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 55 45 90 3.59 0.2657 WVFGRD96 2.0 55 45 90 3.69 0.3089 WVFGRD96 3.0 5 40 25 3.74 0.2690 WVFGRD96 4.0 0 30 10 3.80 0.2869 WVFGRD96 5.0 185 20 20 3.82 0.3202 WVFGRD96 6.0 190 20 25 3.82 0.3570 WVFGRD96 7.0 185 25 20 3.82 0.3842 WVFGRD96 8.0 195 20 30 3.90 0.4056 WVFGRD96 9.0 195 25 30 3.91 0.4289 WVFGRD96 10.0 200 30 40 3.92 0.4496 WVFGRD96 11.0 205 30 45 3.93 0.4651 WVFGRD96 12.0 200 35 40 3.94 0.4758 WVFGRD96 13.0 205 35 45 3.95 0.4809 WVFGRD96 14.0 200 40 45 3.96 0.4810 WVFGRD96 15.0 200 40 40 3.96 0.4780 WVFGRD96 16.0 200 40 40 3.97 0.4715 WVFGRD96 17.0 205 40 45 3.97 0.4625 WVFGRD96 18.0 205 40 45 3.97 0.4514 WVFGRD96 19.0 200 45 40 3.98 0.4392 WVFGRD96 20.0 200 45 40 3.98 0.4260 WVFGRD96 21.0 200 45 40 3.99 0.4125 WVFGRD96 22.0 200 45 40 3.99 0.3978 WVFGRD96 23.0 205 45 40 3.99 0.3825 WVFGRD96 24.0 205 45 40 3.99 0.3673 WVFGRD96 25.0 150 30 -60 4.05 0.3564 WVFGRD96 26.0 150 30 -60 4.05 0.3477 WVFGRD96 27.0 150 30 -60 4.06 0.3391 WVFGRD96 28.0 150 30 -60 4.06 0.3305 WVFGRD96 29.0 150 30 -60 4.07 0.3219
The best solution is
WVFGRD96 14.0 200 40 45 3.96 0.4810
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00