The ANSS event ID is ak0168vinufu and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0168vinufu/executive.
2016/07/11 20:05:57 63.806 -149.228 123.0 4.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2016/07/11 20:05:57:0 63.81 -149.23 123.0 4.1 Alaska Stations used: AK.BPAW AK.BWN AK.CAST AK.CCB AK.CUT AK.DHY AK.GHO AK.GLI AK.HDA AK.KNK AK.KTH AK.MCK AK.MDM AK.NEA2 AK.PAX AK.RC01 AK.RND AK.SAW AK.SCM AK.SCRK AK.TRF AK.WRH AT.PMR IM.IL31 IU.COLA TA.H23K TA.H24K TA.I23K TA.J20K TA.J25K TA.J26L TA.K20K TA.L19K TA.L26K TA.M22K TA.M26K TA.POKR Filtering commands used: cut o DIST/4.5 -30 o DIST/4.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.04e+22 dyne-cm Mw = 4.14 Z = 140 km Plane Strike Dip Rake NP1 339 66 129 NP2 95 45 35 Principal Axes: Axis Value Plunge Azimuth T 2.04e+22 52 295 N 0.00e+00 35 140 P -2.04e+22 12 41 Moment Tensor: (dyne-cm) Component Value Mxx -9.57e+21 Mxy -1.27e+22 Mxz 1.03e+21 Myy -2.14e+21 Myz -1.18e+22 Mzz 1.17e+22 -------------- ######---------------- ###########-------------- ##############------------ P - #################----------- --- ####################---------------- ######################---------------- ########## ###########---------------- ########## T ############--------------- ########### ############---------------- -##########################--------------- --##########################-------------- ---#########################-------------# ----########################-----------# ------######################--------#### --------###################------##### ------------######################## --------------------------######## ------------------------###### ----------------------###### -------------------### -------------- Global CMT Convention Moment Tensor: R T P 1.17e+22 1.03e+21 1.18e+22 1.03e+21 -9.57e+21 1.27e+22 1.18e+22 1.27e+22 -2.14e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160711200557/index.html |
STK = 95 DIP = 45 RAKE = 35 MW = 4.14 HS = 140.0
The NDK file is 20160711200557.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/4.5 -30 o DIST/4.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 145 50 -80 3.26 0.2355 WVFGRD96 4.0 205 20 -20 3.25 0.1769 WVFGRD96 6.0 130 90 65 3.27 0.2349 WVFGRD96 8.0 215 25 -10 3.37 0.2668 WVFGRD96 10.0 140 75 60 3.41 0.2977 WVFGRD96 12.0 145 70 65 3.45 0.3168 WVFGRD96 14.0 240 40 35 3.49 0.3221 WVFGRD96 16.0 245 40 35 3.52 0.3249 WVFGRD96 18.0 240 45 35 3.56 0.3210 WVFGRD96 20.0 240 45 30 3.58 0.3120 WVFGRD96 22.0 240 45 25 3.61 0.2987 WVFGRD96 24.0 240 45 25 3.62 0.2853 WVFGRD96 26.0 290 65 45 3.63 0.2737 WVFGRD96 28.0 290 65 45 3.65 0.2646 WVFGRD96 30.0 285 65 40 3.67 0.2544 WVFGRD96 32.0 285 65 40 3.67 0.2404 WVFGRD96 34.0 175 55 -40 3.69 0.2527 WVFGRD96 36.0 175 55 -40 3.70 0.2662 WVFGRD96 38.0 175 50 -45 3.71 0.2763 WVFGRD96 40.0 165 50 -55 3.82 0.3048 WVFGRD96 42.0 150 40 -90 3.84 0.3093 WVFGRD96 44.0 150 40 -90 3.86 0.3084 WVFGRD96 46.0 335 50 -85 3.88 0.3042 WVFGRD96 48.0 335 50 -85 3.89 0.2991 WVFGRD96 50.0 335 50 -85 3.90 0.2932 WVFGRD96 52.0 340 50 -80 3.91 0.2872 WVFGRD96 54.0 340 50 -80 3.91 0.2807 WVFGRD96 56.0 335 50 -75 3.91 0.2747 WVFGRD96 58.0 340 50 -70 3.92 0.2697 WVFGRD96 60.0 250 55 25 3.98 0.2807 WVFGRD96 62.0 275 60 40 3.96 0.3031 WVFGRD96 64.0 275 60 40 3.98 0.3384 WVFGRD96 66.0 275 60 40 3.99 0.3720 WVFGRD96 68.0 275 60 40 4.01 0.4007 WVFGRD96 70.0 100 45 65 3.99 0.4277 WVFGRD96 72.0 100 45 65 4.00 0.4555 WVFGRD96 74.0 100 45 60 4.01 0.4780 WVFGRD96 76.0 100 45 60 4.01 0.4980 WVFGRD96 78.0 100 45 55 4.02 0.5172 WVFGRD96 80.0 100 45 55 4.03 0.5358 WVFGRD96 82.0 100 45 55 4.03 0.5517 WVFGRD96 84.0 100 45 55 4.03 0.5656 WVFGRD96 86.0 100 45 50 4.04 0.5793 WVFGRD96 88.0 100 45 50 4.05 0.5923 WVFGRD96 90.0 100 45 50 4.05 0.6039 WVFGRD96 92.0 100 45 50 4.05 0.6144 WVFGRD96 94.0 95 45 45 4.06 0.6256 WVFGRD96 96.0 95 45 45 4.06 0.6355 WVFGRD96 98.0 95 45 45 4.06 0.6452 WVFGRD96 100.0 95 45 45 4.07 0.6552 WVFGRD96 102.0 95 45 45 4.07 0.6635 WVFGRD96 104.0 95 45 45 4.07 0.6713 WVFGRD96 106.0 95 45 40 4.08 0.6786 WVFGRD96 108.0 95 45 40 4.09 0.6843 WVFGRD96 110.0 95 45 40 4.09 0.6924 WVFGRD96 112.0 95 45 40 4.09 0.6979 WVFGRD96 114.0 95 45 40 4.10 0.7028 WVFGRD96 116.0 95 45 40 4.10 0.7076 WVFGRD96 118.0 95 45 40 4.10 0.7117 WVFGRD96 120.0 95 45 40 4.11 0.7159 WVFGRD96 122.0 95 45 40 4.11 0.7189 WVFGRD96 124.0 95 45 40 4.11 0.7224 WVFGRD96 126.0 95 45 40 4.11 0.7244 WVFGRD96 128.0 95 45 40 4.12 0.7270 WVFGRD96 130.0 95 45 40 4.12 0.7281 WVFGRD96 132.0 95 45 40 4.12 0.7293 WVFGRD96 134.0 95 45 40 4.12 0.7313 WVFGRD96 136.0 95 45 40 4.13 0.7317 WVFGRD96 138.0 95 45 40 4.13 0.7326 WVFGRD96 140.0 95 45 35 4.14 0.7335 WVFGRD96 142.0 95 45 40 4.13 0.7323 WVFGRD96 144.0 95 45 35 4.14 0.7332 WVFGRD96 146.0 95 45 35 4.15 0.7315 WVFGRD96 148.0 95 45 40 4.14 0.7315
The best solution is
WVFGRD96 140.0 95 45 35 4.14 0.7335
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/4.5 -30 o DIST/4.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00