The ANSS event ID is us1000604i and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us1000604i/executive.
2016/07/05 17:21:57 36.271 -97.571 6.4 3.2 Oklahoma
USGS/SLU Moment Tensor Solution
ENS 2016/07/05 17:21:57:0 36.27 -97.57 6.4 3.2 Oklahoma
Stations used:
GS.KAN14 GS.OK025 GS.OK029 GS.OK032 GS.OK033 OK.BCOK
OK.CROK OK.HTCH
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.05 n 3
lp c 0.15 n 3
Best Fitting Double Couple
Mo = 8.81e+20 dyne-cm
Mw = 3.23
Z = 5 km
Plane Strike Dip Rake
NP1 150 85 -10
NP2 241 80 -175
Principal Axes:
Axis Value Plunge Azimuth
T 8.81e+20 3 196
N 0.00e+00 79 304
P -8.81e+20 11 105
Moment Tensor: (dyne-cm)
Component Value
Mxx 7.55e+20
Mxy 4.44e+20
Mxz -9.84e+18
Myy -7.29e+20
Myz -1.68e+20
Mzz -2.66e+19
##############
-#####################
-----#######################
------########################
---------#########################
-----------#########################
-------------##################-------
---------------############-------------
----------------#######-----------------
------------------###---------------------
-----------------##-----------------------
--------------######----------------------
------------#########----------------- -
--------#############---------------- P
------################---------------
---####################---------------
#######################-------------
#######################-----------
######################--------
#######################-----
#### ##############-
T ###########
Global CMT Convention Moment Tensor:
R T P
-2.66e+19 -9.84e+18 1.68e+20
-9.84e+18 7.55e+20 -4.44e+20
1.68e+20 -4.44e+20 -7.29e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160705172157/index.html
|
STK = 150
DIP = 85
RAKE = -10
MW = 3.23
HS = 5.0
The NDK file is 20160705172157.ndk The waveform inversion is preferred.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.15 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 65 75 10 2.88 0.4289
WVFGRD96 2.0 330 90 -5 3.04 0.5278
WVFGRD96 3.0 150 85 0 3.12 0.5775
WVFGRD96 4.0 330 90 10 3.18 0.6028
WVFGRD96 5.0 150 85 -10 3.23 0.6084
WVFGRD96 6.0 150 85 -5 3.28 0.6017
WVFGRD96 7.0 150 85 -5 3.32 0.5853
WVFGRD96 8.0 150 85 -5 3.37 0.5584
WVFGRD96 9.0 330 90 -15 3.41 0.5279
WVFGRD96 10.0 150 90 10 3.43 0.4960
WVFGRD96 11.0 330 90 -10 3.45 0.4613
WVFGRD96 12.0 155 85 20 3.47 0.4283
WVFGRD96 13.0 330 90 -20 3.49 0.3931
WVFGRD96 14.0 150 90 20 3.50 0.3583
WVFGRD96 15.0 150 85 -10 3.49 0.3265
WVFGRD96 16.0 150 85 -15 3.50 0.2973
WVFGRD96 17.0 150 85 -10 3.50 0.2704
WVFGRD96 18.0 150 90 40 3.55 0.2509
WVFGRD96 19.0 240 35 5 3.62 0.2392
WVFGRD96 20.0 240 35 5 3.63 0.2354
WVFGRD96 21.0 240 40 5 3.61 0.2319
WVFGRD96 22.0 240 40 0 3.62 0.2306
WVFGRD96 23.0 245 35 10 3.65 0.2426
WVFGRD96 24.0 240 45 0 3.62 0.2594
WVFGRD96 25.0 245 40 5 3.65 0.2772
WVFGRD96 26.0 245 50 5 3.62 0.2951
WVFGRD96 27.0 245 50 0 3.64 0.3169
WVFGRD96 28.0 240 75 -10 3.59 0.3361
WVFGRD96 29.0 240 75 -10 3.60 0.3570
The best solution is
WVFGRD96 5.0 150 85 -10 3.23 0.6084
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.15 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00