The ANSS event ID is mb80154014 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/mb80154014/executive.
2016/06/14 14:35:28 44.733 -111.765 9.7 3.98 Montana
USGS/SLU Moment Tensor Solution
ENS 2016/06/14 14:35:28:0 44.73 -111.76 9.7 4.0 Montana
Stations used:
IW.DLMT IW.FLWY IW.FXWY IW.REDW IW.SNOW IW.TPAW MB.JTMT
US.BOZ US.HLID US.MSO US.RLMT WY.YHL WY.YMR WY.YNR
Filtering commands used:
cut o DIST/3.3 -10 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.04 n 3
lp c 0.20 n 3
Best Fitting Double Couple
Mo = 2.95e+21 dyne-cm
Mw = 3.58
Z = 9 km
Plane Strike Dip Rake
NP1 61 76 164
NP2 155 75 15
Principal Axes:
Axis Value Plunge Azimuth
T 2.95e+21 21 18
N 0.00e+00 69 199
P -2.95e+21 0 108
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.04e+21
Mxy 1.62e+21
Mxz 9.48e+20
Myy -2.42e+21
Myz 2.88e+20
Mzz 3.82e+20
##############
--############# ####
-----############# T #######
-------############ ########
---------#########################
----------##########################
------------########################--
-------------######################-----
--------------###################-------
----------------################----------
----------------#############-------------
-----------------##########---------------
------------------######------------------
------------------#-------------------
---------------####------------------- P
---------##########------------------
###################-----------------
####################--------------
###################-----------
###################---------
##################----
##############
Global CMT Convention Moment Tensor:
R T P
3.82e+20 9.48e+20 -2.88e+20
9.48e+20 2.04e+21 -1.62e+21
-2.88e+20 -1.62e+21 -2.42e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160614143528/index.html
|
STK = 155
DIP = 75
RAKE = 15
MW = 3.58
HS = 9.0
The NDK file is 20160614143528.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2016/06/14 14:35:28:0 44.73 -111.76 9.7 4.0 Montana
Stations used:
IW.DLMT IW.FLWY IW.FXWY IW.REDW IW.SNOW IW.TPAW MB.JTMT
US.BOZ US.HLID US.MSO US.RLMT WY.YHL WY.YMR WY.YNR
Filtering commands used:
cut o DIST/3.3 -10 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.04 n 3
lp c 0.20 n 3
Best Fitting Double Couple
Mo = 2.95e+21 dyne-cm
Mw = 3.58
Z = 9 km
Plane Strike Dip Rake
NP1 61 76 164
NP2 155 75 15
Principal Axes:
Axis Value Plunge Azimuth
T 2.95e+21 21 18
N 0.00e+00 69 199
P -2.95e+21 0 108
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.04e+21
Mxy 1.62e+21
Mxz 9.48e+20
Myy -2.42e+21
Myz 2.88e+20
Mzz 3.82e+20
##############
--############# ####
-----############# T #######
-------############ ########
---------#########################
----------##########################
------------########################--
-------------######################-----
--------------###################-------
----------------################----------
----------------#############-------------
-----------------##########---------------
------------------######------------------
------------------#-------------------
---------------####------------------- P
---------##########------------------
###################-----------------
####################--------------
###################-----------
###################---------
##################----
##############
Global CMT Convention Moment Tensor:
R T P
3.82e+20 9.48e+20 -2.88e+20
9.48e+20 2.04e+21 -1.62e+21
-2.88e+20 -1.62e+21 -2.42e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160614143528/index.html
|
Montana Bureau of Mines and Geology Montana Tech of the University of Montana |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -10 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.20 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 240 80 -5 2.82 0.1638
WVFGRD96 2.0 150 80 -10 3.05 0.2635
WVFGRD96 3.0 150 70 -10 3.17 0.3348
WVFGRD96 4.0 330 80 -20 3.26 0.3986
WVFGRD96 5.0 335 90 -20 3.32 0.4526
WVFGRD96 6.0 335 90 -20 3.39 0.4943
WVFGRD96 7.0 155 85 15 3.45 0.5281
WVFGRD96 8.0 155 75 15 3.53 0.5548
WVFGRD96 9.0 155 75 15 3.58 0.5662
WVFGRD96 10.0 155 75 15 3.62 0.5647
WVFGRD96 11.0 155 85 10 3.64 0.5537
WVFGRD96 12.0 155 85 10 3.67 0.5344
WVFGRD96 13.0 155 90 10 3.69 0.5079
WVFGRD96 14.0 155 90 15 3.70 0.4759
WVFGRD96 15.0 155 80 15 3.72 0.4408
WVFGRD96 16.0 155 80 15 3.72 0.4040
WVFGRD96 17.0 155 80 20 3.73 0.3685
WVFGRD96 18.0 155 85 25 3.73 0.3366
WVFGRD96 19.0 155 85 30 3.74 0.3119
WVFGRD96 20.0 155 85 35 3.74 0.2903
WVFGRD96 21.0 160 80 40 3.75 0.2719
WVFGRD96 22.0 155 80 45 3.78 0.2624
WVFGRD96 23.0 160 80 45 3.77 0.2556
WVFGRD96 24.0 155 90 50 3.78 0.2490
WVFGRD96 25.0 155 90 50 3.78 0.2432
WVFGRD96 26.0 340 90 -45 3.76 0.2389
WVFGRD96 27.0 65 60 -20 3.74 0.2415
WVFGRD96 28.0 70 55 -5 3.73 0.2436
WVFGRD96 29.0 70 55 -5 3.72 0.2440
The best solution is
WVFGRD96 9.0 155 75 15 3.58 0.5662
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -10 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.20 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00