The ANSS event ID is ak0166j12cvm and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0166j12cvm/executive.
2016/05/21 11:34:09 62.360 -152.463 143.5 4.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2016/05/21 11:34:09:0 62.36 -152.46 143.5 4.5 Alaska Stations used: AK.CUT AK.EYAK AK.HDA AK.KNK AK.NEA2 AK.PAX AK.PPLA AK.RC01 AK.RIDG AK.SAW AK.SWD AT.PMR AT.SVW2 AT.TTA IM.IL31 IU.COLA TA.H21K TA.H23K TA.H24K TA.I21K TA.I23K TA.J20K TA.K20K TA.L19K TA.M22K TA.M24K TA.N18K TA.N19K TA.N25K TA.O19K TA.O22K TA.P18K TA.POKR Filtering commands used: cut a -20 a 80 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 5.75e+22 dyne-cm Mw = 4.44 Z = 146 km Plane Strike Dip Rake NP1 355 86 87 NP2 215 5 130 Principal Axes: Axis Value Plunge Azimuth T 5.75e+22 49 261 N 0.00e+00 3 355 P -5.75e+22 41 88 Moment Tensor: (dyne-cm) Component Value Mxx 5.11e+20 Mxy 2.49e+21 Mxz -5.28e+21 Myy -8.17e+21 Myz -5.67e+22 Mzz 7.65e+21 --###--------- --########------------ --###########--------------- -#############---------------- -################----------------- -#################------------------ -##################------------------- -###################-------------------- -####################------------------- -#####################---------- ------- -######## ##########---------- P ------- -######## T ##########---------- ------- -######## ##########-------------------- #####################------------------- -####################------------------- #####################----------------- ####################---------------- ###################--------------- #################------------- -###############------------ #############--------- #########----- Global CMT Convention Moment Tensor: R T P 7.65e+21 -5.28e+21 5.67e+22 -5.28e+21 5.11e+20 -2.49e+21 5.67e+22 -2.49e+21 -8.17e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160521113409/index.html |
STK = 35 DIP = -5 RAKE = -50 MW = 4.44 HS = 146.0
The NDK file is 20160521113409.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -20 a 80 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 60 90 10 3.40 0.1842 WVFGRD96 4.0 240 80 -10 3.51 0.2084 WVFGRD96 6.0 240 90 -15 3.57 0.2131 WVFGRD96 8.0 240 90 -15 3.64 0.2256 WVFGRD96 10.0 60 85 15 3.67 0.2327 WVFGRD96 12.0 60 85 15 3.71 0.2372 WVFGRD96 14.0 60 85 10 3.74 0.2405 WVFGRD96 16.0 60 75 -5 3.77 0.2417 WVFGRD96 18.0 60 75 5 3.78 0.2389 WVFGRD96 20.0 60 75 5 3.80 0.2302 WVFGRD96 22.0 60 75 10 3.81 0.2174 WVFGRD96 24.0 150 75 5 3.82 0.2106 WVFGRD96 26.0 150 70 5 3.84 0.2163 WVFGRD96 28.0 150 70 5 3.86 0.2193 WVFGRD96 30.0 150 75 10 3.88 0.2255 WVFGRD96 32.0 150 75 10 3.90 0.2335 WVFGRD96 34.0 150 85 15 3.93 0.2406 WVFGRD96 36.0 330 90 -15 3.97 0.2504 WVFGRD96 38.0 330 90 -10 4.01 0.2649 WVFGRD96 40.0 155 85 15 4.08 0.2872 WVFGRD96 42.0 155 85 15 4.11 0.2993 WVFGRD96 44.0 330 90 -15 4.13 0.3071 WVFGRD96 46.0 330 90 -10 4.15 0.3137 WVFGRD96 48.0 330 90 -10 4.17 0.3188 WVFGRD96 50.0 155 85 15 4.19 0.3267 WVFGRD96 52.0 335 90 -15 4.21 0.3282 WVFGRD96 54.0 155 85 15 4.22 0.3358 WVFGRD96 56.0 155 80 15 4.23 0.3393 WVFGRD96 58.0 155 80 10 4.24 0.3431 WVFGRD96 60.0 155 80 10 4.24 0.3470 WVFGRD96 62.0 155 80 5 4.25 0.3514 WVFGRD96 64.0 155 80 5 4.25 0.3554 WVFGRD96 66.0 155 80 5 4.26 0.3576 WVFGRD96 68.0 150 85 -10 4.24 0.3619 WVFGRD96 70.0 150 85 -15 4.24 0.3670 WVFGRD96 72.0 150 85 -20 4.25 0.3733 WVFGRD96 74.0 150 85 -20 4.25 0.3804 WVFGRD96 76.0 150 85 -25 4.25 0.3866 WVFGRD96 78.0 150 85 -25 4.26 0.3931 WVFGRD96 80.0 150 85 -25 4.26 0.3993 WVFGRD96 82.0 150 85 -30 4.26 0.4039 WVFGRD96 84.0 150 85 -30 4.27 0.4100 WVFGRD96 86.0 150 85 -30 4.27 0.4157 WVFGRD96 88.0 165 90 -40 4.28 0.4205 WVFGRD96 90.0 165 90 -45 4.29 0.4294 WVFGRD96 92.0 160 90 -50 4.29 0.4402 WVFGRD96 94.0 160 90 -55 4.30 0.4517 WVFGRD96 96.0 160 90 -55 4.31 0.4631 WVFGRD96 98.0 160 90 -60 4.31 0.4736 WVFGRD96 100.0 160 90 -60 4.32 0.4845 WVFGRD96 102.0 340 90 65 4.33 0.4966 WVFGRD96 104.0 160 90 -70 4.34 0.5090 WVFGRD96 106.0 160 90 -70 4.35 0.5207 WVFGRD96 108.0 160 90 -70 4.35 0.5313 WVFGRD96 110.0 160 90 -70 4.36 0.5411 WVFGRD96 112.0 165 90 -75 4.37 0.5505 WVFGRD96 114.0 345 85 80 4.38 0.5671 WVFGRD96 116.0 345 85 80 4.38 0.5766 WVFGRD96 118.0 350 85 80 4.38 0.5853 WVFGRD96 120.0 350 85 85 4.40 0.5940 WVFGRD96 122.0 350 85 85 4.40 0.6022 WVFGRD96 124.0 350 85 85 4.40 0.6097 WVFGRD96 126.0 350 85 85 4.41 0.6158 WVFGRD96 128.0 170 90 -80 4.41 0.5997 WVFGRD96 130.0 170 90 -80 4.41 0.6038 WVFGRD96 132.0 350 85 85 4.41 0.6308 WVFGRD96 134.0 355 85 85 4.42 0.6345 WVFGRD96 136.0 140 5 55 4.44 0.6332 WVFGRD96 138.0 130 5 45 4.44 0.6338 WVFGRD96 140.0 130 5 45 4.44 0.6355 WVFGRD96 142.0 165 5 80 4.43 0.6390 WVFGRD96 144.0 15 -5 -70 4.43 0.6422 WVFGRD96 146.0 35 -5 -50 4.44 0.6434 WVFGRD96 148.0 180 90 -90 4.46 0.6203 WVFGRD96 150.0 165 5 80 4.44 0.6352 WVFGRD96 152.0 40 -5 -45 4.44 0.6367 WVFGRD96 154.0 -5 85 85 4.43 0.6311 WVFGRD96 156.0 25 -5 -60 4.44 0.6297 WVFGRD96 158.0 -5 85 85 4.43 0.6231 WVFGRD96 160.0 180 90 -90 4.46 0.6048 WVFGRD96 162.0 155 5 70 4.44 0.6102 WVFGRD96 164.0 165 5 80 4.43 0.6048 WVFGRD96 166.0 165 5 80 4.43 0.5974 WVFGRD96 168.0 185 5 100 4.43 0.5938
The best solution is
WVFGRD96 146.0 35 -5 -50 4.44 0.6434
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -20 a 80 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00