Location

Location ANSS

The ANSS event ID is ak0166j12cvm and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0166j12cvm/executive.

2016/05/21 11:34:09 62.360 -152.463 143.5 4.5 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2016/05/21 11:34:09:0  62.36 -152.46 143.5 4.5 Alaska
 
 Stations used:
   AK.CUT AK.EYAK AK.HDA AK.KNK AK.NEA2 AK.PAX AK.PPLA AK.RC01 
   AK.RIDG AK.SAW AK.SWD AT.PMR AT.SVW2 AT.TTA IM.IL31 IU.COLA 
   TA.H21K TA.H23K TA.H24K TA.I21K TA.I23K TA.J20K TA.K20K 
   TA.L19K TA.M22K TA.M24K TA.N18K TA.N19K TA.N25K TA.O19K 
   TA.O22K TA.P18K TA.POKR 
 
 Filtering commands used:
   cut a -20 a 80
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 5.75e+22 dyne-cm
  Mw = 4.44 
  Z  = 146 km
  Plane   Strike  Dip  Rake
   NP1      355    86    87
   NP2      215     5   130
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.75e+22     49     261
    N   0.00e+00      3     355
    P  -5.75e+22     41      88

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     5.11e+20
       Mxy     2.49e+21
       Mxz    -5.28e+21
       Myy    -8.17e+21
       Myz    -5.67e+22
       Mzz     7.65e+21
                                                     
                                                     
                                                     
                                                     
                     --###---------                  
                 --########------------              
              --###########---------------           
             -#############----------------          
           -################-----------------        
          -#################------------------       
         -##################-------------------      
        -###################--------------------     
        -####################-------------------     
       -#####################----------   -------    
       -########   ##########---------- P -------    
       -######## T ##########----------   -------    
       -########   ##########--------------------    
        #####################-------------------     
        -####################-------------------     
         #####################-----------------      
          ####################----------------       
           ###################---------------        
             #################-------------          
              -###############------------           
                 #############---------              
                     #########-----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  7.65e+21  -5.28e+21   5.67e+22 
 -5.28e+21   5.11e+20  -2.49e+21 
  5.67e+22  -2.49e+21  -8.17e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160521113409/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 35
      DIP = -5
     RAKE = -50
       MW = 4.44
       HS = 146.0

The NDK file is 20160521113409.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -20 a 80
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0    60    90    10   3.40 0.1842
WVFGRD96    4.0   240    80   -10   3.51 0.2084
WVFGRD96    6.0   240    90   -15   3.57 0.2131
WVFGRD96    8.0   240    90   -15   3.64 0.2256
WVFGRD96   10.0    60    85    15   3.67 0.2327
WVFGRD96   12.0    60    85    15   3.71 0.2372
WVFGRD96   14.0    60    85    10   3.74 0.2405
WVFGRD96   16.0    60    75    -5   3.77 0.2417
WVFGRD96   18.0    60    75     5   3.78 0.2389
WVFGRD96   20.0    60    75     5   3.80 0.2302
WVFGRD96   22.0    60    75    10   3.81 0.2174
WVFGRD96   24.0   150    75     5   3.82 0.2106
WVFGRD96   26.0   150    70     5   3.84 0.2163
WVFGRD96   28.0   150    70     5   3.86 0.2193
WVFGRD96   30.0   150    75    10   3.88 0.2255
WVFGRD96   32.0   150    75    10   3.90 0.2335
WVFGRD96   34.0   150    85    15   3.93 0.2406
WVFGRD96   36.0   330    90   -15   3.97 0.2504
WVFGRD96   38.0   330    90   -10   4.01 0.2649
WVFGRD96   40.0   155    85    15   4.08 0.2872
WVFGRD96   42.0   155    85    15   4.11 0.2993
WVFGRD96   44.0   330    90   -15   4.13 0.3071
WVFGRD96   46.0   330    90   -10   4.15 0.3137
WVFGRD96   48.0   330    90   -10   4.17 0.3188
WVFGRD96   50.0   155    85    15   4.19 0.3267
WVFGRD96   52.0   335    90   -15   4.21 0.3282
WVFGRD96   54.0   155    85    15   4.22 0.3358
WVFGRD96   56.0   155    80    15   4.23 0.3393
WVFGRD96   58.0   155    80    10   4.24 0.3431
WVFGRD96   60.0   155    80    10   4.24 0.3470
WVFGRD96   62.0   155    80     5   4.25 0.3514
WVFGRD96   64.0   155    80     5   4.25 0.3554
WVFGRD96   66.0   155    80     5   4.26 0.3576
WVFGRD96   68.0   150    85   -10   4.24 0.3619
WVFGRD96   70.0   150    85   -15   4.24 0.3670
WVFGRD96   72.0   150    85   -20   4.25 0.3733
WVFGRD96   74.0   150    85   -20   4.25 0.3804
WVFGRD96   76.0   150    85   -25   4.25 0.3866
WVFGRD96   78.0   150    85   -25   4.26 0.3931
WVFGRD96   80.0   150    85   -25   4.26 0.3993
WVFGRD96   82.0   150    85   -30   4.26 0.4039
WVFGRD96   84.0   150    85   -30   4.27 0.4100
WVFGRD96   86.0   150    85   -30   4.27 0.4157
WVFGRD96   88.0   165    90   -40   4.28 0.4205
WVFGRD96   90.0   165    90   -45   4.29 0.4294
WVFGRD96   92.0   160    90   -50   4.29 0.4402
WVFGRD96   94.0   160    90   -55   4.30 0.4517
WVFGRD96   96.0   160    90   -55   4.31 0.4631
WVFGRD96   98.0   160    90   -60   4.31 0.4736
WVFGRD96  100.0   160    90   -60   4.32 0.4845
WVFGRD96  102.0   340    90    65   4.33 0.4966
WVFGRD96  104.0   160    90   -70   4.34 0.5090
WVFGRD96  106.0   160    90   -70   4.35 0.5207
WVFGRD96  108.0   160    90   -70   4.35 0.5313
WVFGRD96  110.0   160    90   -70   4.36 0.5411
WVFGRD96  112.0   165    90   -75   4.37 0.5505
WVFGRD96  114.0   345    85    80   4.38 0.5671
WVFGRD96  116.0   345    85    80   4.38 0.5766
WVFGRD96  118.0   350    85    80   4.38 0.5853
WVFGRD96  120.0   350    85    85   4.40 0.5940
WVFGRD96  122.0   350    85    85   4.40 0.6022
WVFGRD96  124.0   350    85    85   4.40 0.6097
WVFGRD96  126.0   350    85    85   4.41 0.6158
WVFGRD96  128.0   170    90   -80   4.41 0.5997
WVFGRD96  130.0   170    90   -80   4.41 0.6038
WVFGRD96  132.0   350    85    85   4.41 0.6308
WVFGRD96  134.0   355    85    85   4.42 0.6345
WVFGRD96  136.0   140     5    55   4.44 0.6332
WVFGRD96  138.0   130     5    45   4.44 0.6338
WVFGRD96  140.0   130     5    45   4.44 0.6355
WVFGRD96  142.0   165     5    80   4.43 0.6390
WVFGRD96  144.0    15    -5   -70   4.43 0.6422
WVFGRD96  146.0    35    -5   -50   4.44 0.6434
WVFGRD96  148.0   180    90   -90   4.46 0.6203
WVFGRD96  150.0   165     5    80   4.44 0.6352
WVFGRD96  152.0    40    -5   -45   4.44 0.6367
WVFGRD96  154.0    -5    85    85   4.43 0.6311
WVFGRD96  156.0    25    -5   -60   4.44 0.6297
WVFGRD96  158.0    -5    85    85   4.43 0.6231
WVFGRD96  160.0   180    90   -90   4.46 0.6048
WVFGRD96  162.0   155     5    70   4.44 0.6102
WVFGRD96  164.0   165     5    80   4.43 0.6048
WVFGRD96  166.0   165     5    80   4.43 0.5974
WVFGRD96  168.0   185     5   100   4.43 0.5938

The best solution is

WVFGRD96  146.0    35    -5   -50   4.44 0.6434

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -20 a 80
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 05:06:38 PM CDT 2024