Location

Location ANSS

The ANSS event ID is ak0165dtyd2a and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0165dtyd2a/executive.

2016/04/26 20:28:40 62.739 -149.685 73.3 4.6 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2016/04/26 20:28:40:0  62.74 -149.68  73.3 4.6 Alaska
 
 Stations used:
   AK.BPAW AK.BWN AK.CAST AK.CUT AK.DHY AK.FIRE AK.GHO AK.GLI 
   AK.KNK AK.KTH AK.MCK AK.NEA2 AK.PAX AK.PWL AK.RC01 AK.RIDG 
   AK.RND AK.SAW AK.SCM AK.TRF AK.WRH AT.MENT AT.PMR IU.COLA 
   TA.I23K TA.M19K TA.M22K TA.POKR 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.00e+23 dyne-cm
  Mw = 4.60 
  Z  = 78 km
  Plane   Strike  Dip  Rake
   NP1      275    55    65
   NP2      134    42   121
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.00e+23     69     130
    N   0.00e+00     20     290
    P  -1.00e+23      7      23

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -7.85e+22
       Mxy    -4.15e+22
       Mxz    -3.30e+22
       Myy    -6.66e+21
       Myz     2.14e+22
       Mzz     8.52e+22
                                                     
                                                     
                                                     
                                                     
                     -------------                   
                 ----------------- P --              
              --------------------   -----           
             ------------------------------          
           #---------------------------------        
          ##----------------------------------       
         ###-------#############---------------      
        ####--########################----------     
        ##--##############################------     
       #-----################################----    
       ------##################################--    
       -------################   ###############-    
       --------############### T ################    
        --------##############   ###############     
        ----------##############################     
         ----------############################      
          ------------########################       
           -------------#####################        
             ---------------###############          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.52e+22  -3.30e+22  -2.14e+22 
 -3.30e+22  -7.85e+22   4.15e+22 
 -2.14e+22   4.15e+22  -6.66e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160426202840/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 275
      DIP = 55
     RAKE = 65
       MW = 4.60
       HS = 78.0

The NDK file is 20160426202840.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2016/04/26 20:28:40:0  62.74 -149.68  73.3 4.6 Alaska
 
 Stations used:
   AK.BPAW AK.BWN AK.CAST AK.CUT AK.DHY AK.FIRE AK.GHO AK.GLI 
   AK.KNK AK.KTH AK.MCK AK.NEA2 AK.PAX AK.PWL AK.RC01 AK.RIDG 
   AK.RND AK.SAW AK.SCM AK.TRF AK.WRH AT.MENT AT.PMR IU.COLA 
   TA.I23K TA.M19K TA.M22K TA.POKR 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.00e+23 dyne-cm
  Mw = 4.60 
  Z  = 78 km
  Plane   Strike  Dip  Rake
   NP1      275    55    65
   NP2      134    42   121
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.00e+23     69     130
    N   0.00e+00     20     290
    P  -1.00e+23      7      23

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -7.85e+22
       Mxy    -4.15e+22
       Mxz    -3.30e+22
       Myy    -6.66e+21
       Myz     2.14e+22
       Mzz     8.52e+22
                                                     
                                                     
                                                     
                                                     
                     -------------                   
                 ----------------- P --              
              --------------------   -----           
             ------------------------------          
           #---------------------------------        
          ##----------------------------------       
         ###-------#############---------------      
        ####--########################----------     
        ##--##############################------     
       #-----################################----    
       ------##################################--    
       -------################   ###############-    
       --------############### T ################    
        --------##############   ###############     
        ----------##############################     
         ----------############################      
          ------------########################       
           -------------#####################        
             ---------------###############          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.52e+22  -3.30e+22  -2.14e+22 
 -3.30e+22  -7.85e+22   4.15e+22 
 -2.14e+22   4.15e+22  -6.66e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160426202840/index.html
	
Regional Moment Tensor (Mwr)
Moment	9.370e+15 N-m
Magnitude	4.6 Mwr
Depth	76.0 km
Percent DC	21 %
Half Duration	–
Catalog	US
Data Source	US3
Contributor	US3
Nodal Planes
Plane	Strike	Dip	Rake
NP1	280	56	76
NP2	125	36	111
Principal Axes
Axis	Value	Plunge	Azimuth
T	6.499e+15 N-m	74	150
N	4.242e+15 N-m	12	288
P	-10.740e+15 N-m	10	20

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   130    40   -60   3.81 0.2041
WVFGRD96    4.0   160    75    45   3.84 0.2127
WVFGRD96    6.0   160    70    45   3.90 0.2466
WVFGRD96    8.0   165    70    50   4.00 0.2601
WVFGRD96   10.0   325    80   -50   4.02 0.2658
WVFGRD96   12.0   325    75   -45   4.05 0.2622
WVFGRD96   14.0   325    75   -40   4.08 0.2537
WVFGRD96   16.0   245    50    15   4.11 0.2433
WVFGRD96   18.0   250    50    20   4.14 0.2481
WVFGRD96   20.0   250    55    25   4.17 0.2624
WVFGRD96   22.0   250    55    20   4.20 0.2782
WVFGRD96   24.0   250    55    20   4.22 0.2894
WVFGRD96   26.0   250    55    20   4.24 0.2964
WVFGRD96   28.0   250    55    15   4.26 0.3003
WVFGRD96   30.0   250    60    15   4.27 0.3144
WVFGRD96   32.0   250    60    20   4.28 0.3267
WVFGRD96   34.0   250    60    20   4.30 0.3402
WVFGRD96   36.0   250    60    20   4.32 0.3539
WVFGRD96   38.0   255    60    25   4.35 0.3653
WVFGRD96   40.0   255    50    30   4.43 0.3853
WVFGRD96   42.0   255    50    30   4.45 0.3822
WVFGRD96   44.0   260    50    35   4.47 0.3769
WVFGRD96   46.0   260    50    35   4.49 0.3725
WVFGRD96   48.0   260    60    45   4.50 0.3741
WVFGRD96   50.0   265    60    50   4.52 0.3852
WVFGRD96   52.0   265    60    50   4.53 0.3980
WVFGRD96   54.0   265    60    50   4.54 0.4109
WVFGRD96   56.0   270    60    55   4.55 0.4229
WVFGRD96   58.0   270    60    60   4.56 0.4364
WVFGRD96   60.0   270    60    60   4.57 0.4483
WVFGRD96   62.0   270    60    60   4.57 0.4570
WVFGRD96   64.0   270    60    60   4.58 0.4644
WVFGRD96   66.0   270    60    60   4.58 0.4713
WVFGRD96   68.0   270    60    60   4.59 0.4783
WVFGRD96   70.0   270    60    60   4.59 0.4818
WVFGRD96   72.0   270    60    60   4.60 0.4864
WVFGRD96   74.0   270    60    60   4.60 0.4886
WVFGRD96   76.0   275    55    65   4.60 0.4888
WVFGRD96   78.0   275    55    65   4.60 0.4890
WVFGRD96   80.0   270    60    60   4.61 0.4870
WVFGRD96   82.0   270    60    60   4.61 0.4860
WVFGRD96   84.0   270    60    60   4.61 0.4835
WVFGRD96   86.0   265    60    55   4.61 0.4812
WVFGRD96   88.0   265    60    55   4.61 0.4781
WVFGRD96   90.0   265    60    55   4.62 0.4750
WVFGRD96   92.0   265    65    50   4.63 0.4719
WVFGRD96   94.0   265    65    50   4.63 0.4691
WVFGRD96   96.0   260    70    45   4.64 0.4661
WVFGRD96   98.0   260    65    50   4.63 0.4629

The best solution is

WVFGRD96   78.0   275    55    65   4.60 0.4890

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 04:07:49 PM CDT 2024