The ANSS event ID is ak0164qok4tv and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0164qok4tv/executive.
2016/04/12 20:50:00 67.636 -162.836 13.7 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2016/04/12 20:50:00:0 67.64 -162.84 13.7 4.3 Alaska Stations used: AK.ANM AK.KOTZ AK.RDOG AK.TNA Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.55e+22 dyne-cm Mw = 4.30 Z = 12 km Plane Strike Dip Rake NP1 350 80 25 NP2 255 65 169 Principal Axes: Axis Value Plunge Azimuth T 3.55e+22 25 215 N 0.00e+00 63 10 P -3.55e+22 10 121 Moment Tensor: (dyne-cm) Component Value Mxx 1.07e+22 Mxy 2.89e+22 Mxz -7.95e+21 Myy -1.58e+22 Myz -1.29e+22 Mzz 5.13e+21 ----########## ---------############# -------------############### --------------################ -----------------################# ------------------################## --------------------################## --------------------#----------------### --------------########------------------ -----------############------------------- -------################------------------- -----###################------------------ ---#####################------------------ #######################----------------- ########################---------------- #######################----------- - ######################----------- P ###### ############----------- #### T ############----------- ### ############---------- ###############------- ###########--- Global CMT Convention Moment Tensor: R T P 5.13e+21 -7.95e+21 1.29e+22 -7.95e+21 1.07e+22 -2.89e+22 1.29e+22 -2.89e+22 -1.58e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160412205000/index.html |
STK = 350 DIP = 80 RAKE = 25 MW = 4.30 HS = 12.0
The NDK file is 20160412205000.ndk The waveform inversion is preferred.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 155 90 0 3.74 0.1740 WVFGRD96 2.0 155 90 5 3.92 0.2762 WVFGRD96 3.0 155 90 0 3.99 0.3263 WVFGRD96 4.0 335 85 10 4.06 0.3684 WVFGRD96 5.0 340 85 15 4.08 0.4058 WVFGRD96 6.0 340 85 15 4.13 0.4398 WVFGRD96 7.0 345 80 15 4.15 0.4721 WVFGRD96 8.0 345 80 20 4.21 0.5038 WVFGRD96 9.0 350 80 20 4.23 0.5219 WVFGRD96 10.0 350 80 20 4.25 0.5350 WVFGRD96 11.0 350 80 25 4.29 0.5430 WVFGRD96 12.0 350 80 25 4.30 0.5463 WVFGRD96 13.0 350 80 25 4.32 0.5455 WVFGRD96 14.0 350 80 20 4.33 0.5416 WVFGRD96 15.0 350 80 20 4.34 0.5358 WVFGRD96 16.0 165 75 -5 4.35 0.5333 WVFGRD96 17.0 165 75 0 4.36 0.5271 WVFGRD96 18.0 165 80 10 4.38 0.5210 WVFGRD96 19.0 165 80 15 4.40 0.5151 WVFGRD96 20.0 165 80 15 4.40 0.5102 WVFGRD96 21.0 165 85 25 4.43 0.5062 WVFGRD96 22.0 165 85 30 4.46 0.5021 WVFGRD96 23.0 165 85 30 4.46 0.4968 WVFGRD96 24.0 170 75 30 4.46 0.4921 WVFGRD96 25.0 170 75 30 4.47 0.4878 WVFGRD96 26.0 170 75 25 4.45 0.4837 WVFGRD96 27.0 170 75 25 4.46 0.4786 WVFGRD96 28.0 170 75 25 4.46 0.4736 WVFGRD96 29.0 170 70 25 4.47 0.4680
The best solution is
WVFGRD96 12.0 350 80 25 4.30 0.5463
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00