The ANSS event ID is nn00536804 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00536804/executive.
2016/03/22 10:00:45 38.656 -118.784 10.9 4.1 Nevada
USGS/SLU Moment Tensor Solution
ENS 2016/03/22 10:00:45:0 38.66 -118.78 10.9 4.1 Nevada
Stations used:
CI.ISA IM.NV31 LB.BMN NN.BEK NN.COLR NN.CTC NN.EMB NN.KVN
NN.LCH NN.LHV NN.MPK NN.OMMB NN.PAH NN.PNT NN.PRN NN.Q09A
NN.REDF NN.RUB NN.S11A NN.VCN NN.YER TA.O03E TA.R11A US.ELK
US.WVOR
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 7.50e+21 dyne-cm
Mw = 3.85
Z = 9 km
Plane Strike Dip Rake
NP1 350 79 -139
NP2 250 50 -15
Principal Axes:
Axis Value Plunge Azimuth
T 7.50e+21 18 114
N 0.00e+00 48 3
P -7.50e+21 36 218
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.88e+21
Mxy -4.86e+21
Mxz 1.91e+21
Myy 3.79e+21
Myz 4.26e+21
Mzz -1.91e+21
####----------
#########-------------
#############---------------
##############----------------
#################-----------------
#################--#############----
#############-------#################-
###########-----------##################
########--------------##################
#######----------------###################
#####-------------------##################
####--------------------##################
###---------------------##################
#-----------------------########## ###
#-----------------------########## T ###
--------- -----------########## ##
-------- P -----------##############
------- -----------#############
-------------------###########
------------------##########
---------------#######
-----------###
Global CMT Convention Moment Tensor:
R T P
-1.91e+21 1.91e+21 -4.26e+21
1.91e+21 -1.88e+21 4.86e+21
-4.26e+21 4.86e+21 3.79e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160322100045/index.html
|
STK = 250
DIP = 50
RAKE = -15
MW = 3.85
HS = 9.0
The NDK file is 20160322100045.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2016/03/22 10:00:45:0 38.66 -118.78 10.9 4.1 Nevada
Stations used:
CI.ISA IM.NV31 LB.BMN NN.BEK NN.COLR NN.CTC NN.EMB NN.KVN
NN.LCH NN.LHV NN.MPK NN.OMMB NN.PAH NN.PNT NN.PRN NN.Q09A
NN.REDF NN.RUB NN.S11A NN.VCN NN.YER TA.O03E TA.R11A US.ELK
US.WVOR
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 7.50e+21 dyne-cm
Mw = 3.85
Z = 9 km
Plane Strike Dip Rake
NP1 350 79 -139
NP2 250 50 -15
Principal Axes:
Axis Value Plunge Azimuth
T 7.50e+21 18 114
N 0.00e+00 48 3
P -7.50e+21 36 218
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.88e+21
Mxy -4.86e+21
Mxz 1.91e+21
Myy 3.79e+21
Myz 4.26e+21
Mzz -1.91e+21
####----------
#########-------------
#############---------------
##############----------------
#################-----------------
#################--#############----
#############-------#################-
###########-----------##################
########--------------##################
#######----------------###################
#####-------------------##################
####--------------------##################
###---------------------##################
#-----------------------########## ###
#-----------------------########## T ###
--------- -----------########## ##
-------- P -----------##############
------- -----------#############
-------------------###########
------------------##########
---------------#######
-----------###
Global CMT Convention Moment Tensor:
R T P
-1.91e+21 1.91e+21 -4.26e+21
1.91e+21 -1.88e+21 4.86e+21
-4.26e+21 4.86e+21 3.79e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160322100045/index.html
|
Mw Moment 6.561e+14 N-m Magnitude 3.81 Depth 10.0 km Percent DC 93% Half Duration – Catalog NN (nn00536804) Data Source NN2 Contributor NN2 Nodal Planes Plane Strike Dip Rake NP1 252 61 -6 NP2 345 85 -151 Principal Axes Axis Value Plunge Azimuth T 6.671 16 115 N -0.227 60 355 P -6.444 24 213 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 255 80 -15 3.39 0.3273
WVFGRD96 2.0 75 90 10 3.52 0.3972
WVFGRD96 3.0 265 45 20 3.66 0.4378
WVFGRD96 4.0 265 45 20 3.70 0.5054
WVFGRD96 5.0 260 45 5 3.72 0.5580
WVFGRD96 6.0 260 50 5 3.74 0.5950
WVFGRD96 7.0 255 50 -10 3.76 0.6207
WVFGRD96 8.0 250 45 -20 3.83 0.6367
WVFGRD96 9.0 250 50 -15 3.85 0.6398
WVFGRD96 10.0 250 50 -15 3.86 0.6333
WVFGRD96 11.0 255 55 -5 3.88 0.6180
WVFGRD96 12.0 255 60 -5 3.89 0.5978
WVFGRD96 13.0 255 60 -5 3.90 0.5726
WVFGRD96 14.0 255 60 0 3.91 0.5439
WVFGRD96 15.0 255 60 0 3.92 0.5136
WVFGRD96 16.0 255 60 10 3.92 0.4843
WVFGRD96 17.0 255 60 10 3.93 0.4562
WVFGRD96 18.0 255 60 10 3.93 0.4291
WVFGRD96 19.0 255 60 15 3.93 0.4046
WVFGRD96 20.0 255 60 15 3.94 0.3815
WVFGRD96 21.0 255 60 20 3.94 0.3601
WVFGRD96 22.0 255 60 20 3.95 0.3425
WVFGRD96 23.0 255 60 20 3.95 0.3276
WVFGRD96 24.0 260 60 25 3.96 0.3142
WVFGRD96 25.0 345 90 -35 3.94 0.3088
WVFGRD96 26.0 170 85 35 3.95 0.3078
WVFGRD96 27.0 345 90 -35 3.95 0.3054
WVFGRD96 28.0 170 85 35 3.96 0.3054
WVFGRD96 29.0 170 90 35 3.97 0.3040
The best solution is
WVFGRD96 9.0 250 50 -15 3.85 0.6398
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00