The ANSS event ID is nc72592670 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nc72592670/executive.
2016/02/16 23:04:26 37.202 -118.403 15.1 4.77 California
USGS/SLU Moment Tensor Solution ENS 2016/02/16 23:04:26:0 37.20 -118.40 15.1 4.8 California Stations used: BK.CMB BK.HAST BK.HELL BK.JRSC BK.KCC BK.MHC BK.PACP BK.PKD BK.SAO BK.SCZ BK.WENL CI.ADO CI.ARV CI.BAK CI.BCW CI.CCC CI.CHF CI.CWC CI.DEC CI.DJJ CI.EDW2 CI.FOX2 CI.FUR CI.GRA CI.GSC CI.HEC CI.ISA CI.LMR2 CI.LPC CI.LRL CI.MLAC CI.MOP CI.MPM CI.MTP CI.MWC CI.OAT CI.OSI CI.PASC CI.RRX CI.SBC CI.SLA CI.SPG2 CI.TFT CI.TUQ CI.VCS CI.VES CI.VOG CI.VTV CI.WAS2 CI.WCS2 CI.WLH2 CI.WOR IM.NV31 LB.TPH NC.BBGB NC.MCB NC.MDY NC.MINS NC.MLI NC.MMLB NN.BEK NN.CMK6 NN.CTC NN.DSP NN.EMB NN.GWY NN.LCH NN.LHV NN.MPK NN.OUT1 NN.PAH NN.PNT NN.PRN NN.Q09A NN.QSM NN.REDF NN.RUB NN.RYN NN.S11A NN.SHP NN.UNVG NN.VCN NN.WDEM NN.WTNK NN.YER NP.ELK NP.KIR NP.MCD NP.MOD NP.PLA SN.HEL TA.R11A US.TPNV Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.41e+23 dyne-cm Mw = 4.70 Z = 18 km Plane Strike Dip Rake NP1 35 85 15 NP2 304 75 175 Principal Axes: Axis Value Plunge Azimuth T 1.41e+23 14 260 N 0.00e+00 74 53 P -1.41e+23 7 168 Moment Tensor: (dyne-cm) Component Value Mxx -1.30e+23 Mxy 4.95e+22 Mxz 1.09e+22 Myy 1.23e+23 Myz -3.63e+22 Mzz 6.35e+21 -------------- ---------------------- -------------------------### -------------------------##### --------------------------######## ######--------------------########## ############--------------############ #################---------############## ####################-----############### ########################################## #######################---################ ## #################-------############# ## T ################----------########### # ##############--------------######## #################-----------------###### ##############--------------------#### ############----------------------## ##########------------------------ ######------------------------ ###------------------------- ------------- ------ --------- P -- Global CMT Convention Moment Tensor: R T P 6.35e+21 1.09e+22 3.63e+22 1.09e+22 -1.30e+23 -4.95e+22 3.63e+22 -4.95e+22 1.23e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160216230426/index.html |
STK = 35 DIP = 85 RAKE = 15 MW = 4.70 HS = 18.0
The NDK file is 20160216230426.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2016/02/16 23:04:26:0 37.20 -118.40 15.1 4.8 California Stations used: BK.CMB BK.HAST BK.HELL BK.JRSC BK.KCC BK.MHC BK.PACP BK.PKD BK.SAO BK.SCZ BK.WENL CI.ADO CI.ARV CI.BAK CI.BCW CI.CCC CI.CHF CI.CWC CI.DEC CI.DJJ CI.EDW2 CI.FOX2 CI.FUR CI.GRA CI.GSC CI.HEC CI.ISA CI.LMR2 CI.LPC CI.LRL CI.MLAC CI.MOP CI.MPM CI.MTP CI.MWC CI.OAT CI.OSI CI.PASC CI.RRX CI.SBC CI.SLA CI.SPG2 CI.TFT CI.TUQ CI.VCS CI.VES CI.VOG CI.VTV CI.WAS2 CI.WCS2 CI.WLH2 CI.WOR IM.NV31 LB.TPH NC.BBGB NC.MCB NC.MDY NC.MINS NC.MLI NC.MMLB NN.BEK NN.CMK6 NN.CTC NN.DSP NN.EMB NN.GWY NN.LCH NN.LHV NN.MPK NN.OUT1 NN.PAH NN.PNT NN.PRN NN.Q09A NN.QSM NN.REDF NN.RUB NN.RYN NN.S11A NN.SHP NN.UNVG NN.VCN NN.WDEM NN.WTNK NN.YER NP.ELK NP.KIR NP.MCD NP.MOD NP.PLA SN.HEL TA.R11A US.TPNV Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.41e+23 dyne-cm Mw = 4.70 Z = 18 km Plane Strike Dip Rake NP1 35 85 15 NP2 304 75 175 Principal Axes: Axis Value Plunge Azimuth T 1.41e+23 14 260 N 0.00e+00 74 53 P -1.41e+23 7 168 Moment Tensor: (dyne-cm) Component Value Mxx -1.30e+23 Mxy 4.95e+22 Mxz 1.09e+22 Myy 1.23e+23 Myz -3.63e+22 Mzz 6.35e+21 -------------- ---------------------- -------------------------### -------------------------##### --------------------------######## ######--------------------########## ############--------------############ #################---------############## ####################-----############### ########################################## #######################---################ ## #################-------############# ## T ################----------########### # ##############--------------######## #################-----------------###### ##############--------------------#### ############----------------------## ##########------------------------ ######------------------------ ###------------------------- ------------- ------ --------- P -- Global CMT Convention Moment Tensor: R T P 6.35e+21 1.09e+22 3.63e+22 1.09e+22 -1.30e+23 -4.95e+22 3.63e+22 -4.95e+22 1.23e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160216230426/index.html |
Regional Moment Tensor (Mwr) Moment 1.818e+16 N-m Magnitude 4.77 Depth 24.0 km Percent DC 100% Half Duration – Catalog US (us200050nt) Data Source NC1 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 306 81 -179 NP2 216 89 -9 Principal Axes Axis Value Plunge Azimuth T 1.819 5 261 N -0.002 81 27 P -1.817 7 171 |
TMTS Moment 1.757e+16 N-m Magnitude 4.76 Depth 18.0 km Percent DC 96% Half Duration – Catalog NC (nc72592670) Data Source NC1 Contributor NC1 Nodal Planes Plane Strike Dip Rake NP1 305 79 -176 NP2 214 86 -11 Principal Axes Axis Value Plunge Azimuth T 1.774 5 260 N -0.034 79 13 P -1.739 10 169 |
W-phase Moment Tensor (Mww) Moment 1.859e+16 N-m Magnitude 4.78 Depth 19.5 km Percent DC 75% Half Duration – Catalog US (us200050nt) Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 307 77 -169 NP2 214 79 -13 Principal Axes Axis Value Plunge Azimuth T 1.969 1 261 N -0.244 73 355 P -1.725 17 170 |
Mw Moment 1.164e+16 N-m Magnitude 4.64 Depth 12.0 km Percent DC 99% Half Duration – Catalog NN (nn00531804) Data Source NN2 Contributor NN2 Nodal Planes Plane Strike Dip Rake NP1 303 66 177 NP2 34 87 24 Principal Axes Axis Value Plunge Azimuth T 1.156 19 261 N 0.006 66 40 P -1.172 14 166 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 215 90 0 4.23 0.3026 WVFGRD96 2.0 215 90 0 4.34 0.3967 WVFGRD96 3.0 215 90 -10 4.39 0.4384 WVFGRD96 4.0 215 90 -20 4.44 0.4684 WVFGRD96 5.0 215 90 -20 4.47 0.4956 WVFGRD96 6.0 215 85 -20 4.50 0.5232 WVFGRD96 7.0 215 85 -20 4.53 0.5534 WVFGRD96 8.0 215 85 -25 4.57 0.5839 WVFGRD96 9.0 215 90 -25 4.59 0.6086 WVFGRD96 10.0 215 90 -20 4.60 0.6310 WVFGRD96 11.0 215 90 -20 4.62 0.6516 WVFGRD96 12.0 215 90 -20 4.63 0.6687 WVFGRD96 13.0 35 85 20 4.65 0.6828 WVFGRD96 14.0 35 85 15 4.66 0.6946 WVFGRD96 15.0 35 85 15 4.67 0.7044 WVFGRD96 16.0 35 85 15 4.68 0.7109 WVFGRD96 17.0 35 85 15 4.69 0.7146 WVFGRD96 18.0 35 85 15 4.70 0.7157 WVFGRD96 19.0 215 90 -15 4.71 0.7129 WVFGRD96 20.0 215 90 -15 4.71 0.7103 WVFGRD96 21.0 35 85 15 4.72 0.7078 WVFGRD96 22.0 35 85 15 4.73 0.7022 WVFGRD96 23.0 35 85 15 4.74 0.6956 WVFGRD96 24.0 215 90 -15 4.74 0.6878 WVFGRD96 25.0 35 85 15 4.75 0.6800 WVFGRD96 26.0 35 90 15 4.75 0.6715 WVFGRD96 27.0 35 90 15 4.76 0.6627 WVFGRD96 28.0 35 90 15 4.77 0.6535 WVFGRD96 29.0 35 90 10 4.77 0.6441
The best solution is
WVFGRD96 18.0 35 85 15 4.70 0.7157
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00