The ANSS event ID is ak01613v15nv and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak01613v15nv/executive.
2016/01/24 10:30:30 59.620 -153.339 125.6 7.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2016/01/24 10:30:30:0 59.62 -153.34 125.6 7.1 Alaska Stations used: AK.CAST AK.DIV AK.KTH AK.MCK AK.PPLA AT.OHAK AT.PMR AT.TTA II.KDAK TA.L19K TA.N19K TA.O18K TA.O19K TA.P18K Filtering commands used: cut o DIST/3.3 -60 o DIST/3.3 +180 rtr taper w 0.1 hp c 0.01 n 3 lp c 0.025 n 3 Best Fitting Double Couple Mo = 4.42e+26 dyne-cm Mw = 7.03 Z = 114 km Plane Strike Dip Rake NP1 55 65 30 NP2 311 63 152 Principal Axes: Axis Value Plunge Azimuth T 4.42e+26 38 274 N 0.00e+00 52 91 P -4.42e+26 1 183 Moment Tensor: (dyne-cm) Component Value Mxx -4.39e+26 Mxy -3.91e+25 Mxz 2.36e+25 Myy 2.70e+26 Myz -2.14e+26 Mzz 1.69e+26 -------------- ---------------------- ---------------------------- ------------------------------ ###########----------------------- ###############--------------------# ###################----------------### #######################------------##### #########################---------###### ####### ##################-----######### ####### T ####################--########## ####### ####################-########### ############################-----######### ########################---------####### ######################------------###### ##################---------------##### ############---------------------### -##-----------------------------## ------------------------------ ---------------------------- --------- ---------- ----- P ------ Global CMT Convention Moment Tensor: R T P 1.69e+26 2.36e+25 2.14e+26 2.36e+25 -4.39e+26 3.91e+25 2.14e+26 3.91e+25 2.70e+26 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160124103030/index.html |
STK = 55 DIP = 65 RAKE = 30 MW = 7.03 HS = 114.0
The NDK file is 20160124103030.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2016/01/24 10:30:30:0 59.62 -153.34 125.6 7.1 Alaska Stations used: AK.CAST AK.DIV AK.KTH AK.MCK AK.PPLA AT.OHAK AT.PMR AT.TTA II.KDAK TA.L19K TA.N19K TA.O18K TA.O19K TA.P18K Filtering commands used: cut o DIST/3.3 -60 o DIST/3.3 +180 rtr taper w 0.1 hp c 0.01 n 3 lp c 0.025 n 3 Best Fitting Double Couple Mo = 4.42e+26 dyne-cm Mw = 7.03 Z = 114 km Plane Strike Dip Rake NP1 55 65 30 NP2 311 63 152 Principal Axes: Axis Value Plunge Azimuth T 4.42e+26 38 274 N 0.00e+00 52 91 P -4.42e+26 1 183 Moment Tensor: (dyne-cm) Component Value Mxx -4.39e+26 Mxy -3.91e+25 Mxz 2.36e+25 Myy 2.70e+26 Myz -2.14e+26 Mzz 1.69e+26 -------------- ---------------------- ---------------------------- ------------------------------ ###########----------------------- ###############--------------------# ###################----------------### #######################------------##### #########################---------###### ####### ##################-----######### ####### T ####################--########## ####### ####################-########### ############################-----######### ########################---------####### ######################------------###### ##################---------------##### ############---------------------### -##-----------------------------## ------------------------------ ---------------------------- --------- ---------- ----- P ------ Global CMT Convention Moment Tensor: R T P 1.69e+26 2.36e+25 2.14e+26 2.36e+25 -4.39e+26 3.91e+25 2.14e+26 3.91e+25 2.70e+26 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160124103030/index.html |
Body-wave Moment Tensor (Mwb) Moment 3.867e+19 N-m Magnitude 6.99 Depth 117.0 km Percent DC 60% Half Duration – Catalog US (us10004gqp) Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 302 50 153 NP2 50 70 43 Principal Axes Axis Value Plunge Azimuth T 4.217 45 274 N -0.837 43 70 P -3.381 12 172 |
W-phase Moment Tensor (Mww) Moment 6.005e+19 N-m Magnitude 7.12 Depth 110.5 km Percent DC 98% Half Duration – Catalog US (us10004gqp) Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 313 61 152 NP2 58 66 33 Principal Axes Axis Value Plunge Azimuth T 5.979 40 277 N 0.050 50 91 P -6.030 3 185 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -60 o DIST/3.3 +180 rtr taper w 0.1 hp c 0.01 n 3 lp c 0.025 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 110 40 -70 6.27 0.1895 WVFGRD96 4.0 100 40 -85 6.35 0.2190 WVFGRD96 6.0 110 45 -65 6.38 0.2218 WVFGRD96 8.0 105 45 -75 6.43 0.2338 WVFGRD96 10.0 105 40 -70 6.43 0.2129 WVFGRD96 12.0 110 40 -65 6.42 0.1842 WVFGRD96 14.0 270 85 -55 6.37 0.1723 WVFGRD96 16.0 270 85 -55 6.38 0.1829 WVFGRD96 18.0 90 90 50 6.38 0.1887 WVFGRD96 20.0 265 80 -55 6.40 0.2028 WVFGRD96 22.0 265 80 -55 6.41 0.2137 WVFGRD96 24.0 265 80 -55 6.43 0.2249 WVFGRD96 26.0 265 80 -50 6.43 0.2354 WVFGRD96 28.0 265 80 -50 6.45 0.2472 WVFGRD96 30.0 265 80 -50 6.46 0.2585 WVFGRD96 32.0 265 80 -50 6.47 0.2686 WVFGRD96 34.0 265 80 -45 6.49 0.2791 WVFGRD96 36.0 260 75 -45 6.50 0.2887 WVFGRD96 38.0 260 75 -40 6.51 0.2974 WVFGRD96 40.0 260 75 -55 6.60 0.2990 WVFGRD96 42.0 260 75 -55 6.61 0.3052 WVFGRD96 44.0 260 75 -50 6.62 0.3107 WVFGRD96 46.0 260 75 -50 6.62 0.3155 WVFGRD96 48.0 260 75 -50 6.63 0.3189 WVFGRD96 50.0 260 75 -50 6.64 0.3210 WVFGRD96 52.0 255 75 -45 6.64 0.3229 WVFGRD96 54.0 255 75 -50 6.64 0.3245 WVFGRD96 56.0 255 75 -40 6.65 0.3289 WVFGRD96 58.0 250 75 -45 6.65 0.3366 WVFGRD96 60.0 80 50 70 6.76 0.3523 WVFGRD96 62.0 75 55 65 6.77 0.3742 WVFGRD96 64.0 75 55 65 6.79 0.3999 WVFGRD96 66.0 65 55 50 6.81 0.4274 WVFGRD96 68.0 65 55 50 6.83 0.4561 WVFGRD96 70.0 65 55 50 6.84 0.4842 WVFGRD96 72.0 65 55 50 6.86 0.5110 WVFGRD96 74.0 65 55 50 6.87 0.5363 WVFGRD96 76.0 65 55 50 6.89 0.5597 WVFGRD96 78.0 60 60 40 6.89 0.5862 WVFGRD96 80.0 60 60 40 6.90 0.6121 WVFGRD96 82.0 60 60 40 6.92 0.6361 WVFGRD96 84.0 60 60 40 6.93 0.6581 WVFGRD96 86.0 60 60 40 6.94 0.6778 WVFGRD96 88.0 60 60 40 6.95 0.6948 WVFGRD96 90.0 60 60 40 6.96 0.7093 WVFGRD96 92.0 60 60 40 6.97 0.7220 WVFGRD96 94.0 60 65 40 6.97 0.7343 WVFGRD96 96.0 60 65 40 6.98 0.7455 WVFGRD96 98.0 60 65 40 6.98 0.7553 WVFGRD96 100.0 60 65 40 6.99 0.7634 WVFGRD96 102.0 60 65 35 7.00 0.7721 WVFGRD96 104.0 60 65 35 7.01 0.7792 WVFGRD96 106.0 60 65 35 7.01 0.7842 WVFGRD96 108.0 60 65 35 7.02 0.7873 WVFGRD96 110.0 60 65 35 7.02 0.7885 WVFGRD96 112.0 55 65 30 7.03 0.7908 WVFGRD96 114.0 55 65 30 7.03 0.7913 WVFGRD96 116.0 55 70 30 7.03 0.7911 WVFGRD96 118.0 55 70 30 7.03 0.7912 WVFGRD96 120.0 55 70 30 7.04 0.7898 WVFGRD96 122.0 55 70 30 7.04 0.7871 WVFGRD96 124.0 55 70 30 7.04 0.7833 WVFGRD96 126.0 55 70 30 7.04 0.7786 WVFGRD96 128.0 55 70 30 7.05 0.7730 WVFGRD96 130.0 50 70 25 7.05 0.7684 WVFGRD96 132.0 50 70 25 7.06 0.7645 WVFGRD96 134.0 50 70 25 7.06 0.7599 WVFGRD96 136.0 50 70 25 7.06 0.7546 WVFGRD96 138.0 50 75 25 7.05 0.7500
The best solution is
WVFGRD96 114.0 55 65 30 7.03 0.7913
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -60 o DIST/3.3 +180 rtr taper w 0.1 hp c 0.01 n 3 lp c 0.025 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00