The ANSS event ID is ak016tu367t and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak016tu367t/executive.
2016/01/18 04:05:55 62.103 -150.640 10.1 4.5 Alaska
USGS/SLU Moment Tensor Solution
ENS 2016/01/18 04:05:55:0 62.10 -150.64 10.1 4.5 Alaska
Stations used:
AK.BMR AK.BPAW AK.BRLK AK.BWN AK.CAST AK.CCB AK.CNP AK.CUT
AK.DHY AK.DIV AK.DOT AK.EYAK AK.FID AK.FIRE AK.GHO AK.GLB
AK.GLI AK.HDA AK.HOM AK.KLU AK.KNK AK.KTH AK.MCK AK.MDM
AK.MLY AK.NEA2 AK.PAX AK.PPD AK.PPLA AK.PWL AK.RAG AK.RC01
AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SWD AK.TRF AK.WRH
AT.MENT AT.MID AT.PMR AT.SVW2 AT.TTA IM.IL31 IU.COLA
TA.H21K TA.H24K TA.I21K TA.I23K TA.J20K TA.J26L TA.K20K
TA.L19K TA.L26K TA.L27K TA.M22K TA.M24K TA.N19K TA.N25K
TA.O18K TA.O19K TA.P18K TA.POKR TA.Q23K TA.TCOL
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 6.61e+22 dyne-cm
Mw = 4.48
Z = 16 km
Plane Strike Dip Rake
NP1 160 70 30
NP2 59 62 157
Principal Axes:
Axis Value Plunge Azimuth
T 6.61e+22 35 22
N 0.00e+00 54 191
P -6.61e+22 5 288
Moment Tensor: (dyne-cm)
Component Value
Mxx 3.21e+22
Mxy 3.44e+22
Mxz 2.70e+22
Myy -5.33e+22
Myz 1.71e+22
Mzz 2.12e+22
##############
---###################
------######################
-------########### #########
---------########### T ###########
----------########### ############
----------########################--
P ----------#######################----
----------######################-----
---------------####################-------
---------------##################---------
----------------###############-----------
-----------------############-------------
----------------##########--------------
-----------------######-----------------
-----------------#--------------------
-------------####-------------------
#################-----------------
#################-------------
#################-----------
################------
##############
Global CMT Convention Moment Tensor:
R T P
2.12e+22 2.70e+22 -1.71e+22
2.70e+22 3.21e+22 -3.44e+22
-1.71e+22 -3.44e+22 -5.33e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160118040555/index.html
|
STK = 160
DIP = 70
RAKE = 30
MW = 4.48
HS = 16.0
The NDK file is 20160118040555.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2016/01/18 04:05:55:0 62.10 -150.64 10.1 4.5 Alaska
Stations used:
AK.BMR AK.BPAW AK.BRLK AK.BWN AK.CAST AK.CCB AK.CNP AK.CUT
AK.DHY AK.DIV AK.DOT AK.EYAK AK.FID AK.FIRE AK.GHO AK.GLB
AK.GLI AK.HDA AK.HOM AK.KLU AK.KNK AK.KTH AK.MCK AK.MDM
AK.MLY AK.NEA2 AK.PAX AK.PPD AK.PPLA AK.PWL AK.RAG AK.RC01
AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SWD AK.TRF AK.WRH
AT.MENT AT.MID AT.PMR AT.SVW2 AT.TTA IM.IL31 IU.COLA
TA.H21K TA.H24K TA.I21K TA.I23K TA.J20K TA.J26L TA.K20K
TA.L19K TA.L26K TA.L27K TA.M22K TA.M24K TA.N19K TA.N25K
TA.O18K TA.O19K TA.P18K TA.POKR TA.Q23K TA.TCOL
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 6.61e+22 dyne-cm
Mw = 4.48
Z = 16 km
Plane Strike Dip Rake
NP1 160 70 30
NP2 59 62 157
Principal Axes:
Axis Value Plunge Azimuth
T 6.61e+22 35 22
N 0.00e+00 54 191
P -6.61e+22 5 288
Moment Tensor: (dyne-cm)
Component Value
Mxx 3.21e+22
Mxy 3.44e+22
Mxz 2.70e+22
Myy -5.33e+22
Myz 1.71e+22
Mzz 2.12e+22
##############
---###################
------######################
-------########### #########
---------########### T ###########
----------########### ############
----------########################--
P ----------#######################----
----------######################-----
---------------####################-------
---------------##################---------
----------------###############-----------
-----------------############-------------
----------------##########--------------
-----------------######-----------------
-----------------#--------------------
-------------####-------------------
#################-----------------
#################-------------
#################-----------
################------
##############
Global CMT Convention Moment Tensor:
R T P
2.12e+22 2.70e+22 -1.71e+22
2.70e+22 3.21e+22 -3.44e+22
-1.71e+22 -3.44e+22 -5.33e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160118040555/index.html
|
Data Source US2 Regional Moment Tensor (Mwr) Moment 7.075e+15 N-m Magnitude 4.50 Depth 14.0 km Percent DC 91% Half Duration – Catalog US (us10004fac) Data Source US2 Contributor US2 Nodal Planes Plane Strike Dip Rake NP1 162 65 35 NP2 56 59 151 Principal Axes Axis Value Plunge Azimuth T 6.908 41 21 N 0.323 48 193 P -7.231 4 287 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 160 80 -10 4.05 0.2589
WVFGRD96 2.0 150 65 -30 4.20 0.3192
WVFGRD96 3.0 325 55 -40 4.27 0.3339
WVFGRD96 4.0 325 55 -40 4.30 0.3416
WVFGRD96 5.0 330 65 -35 4.30 0.3457
WVFGRD96 6.0 335 80 -40 4.32 0.3624
WVFGRD96 7.0 335 85 -40 4.33 0.3856
WVFGRD96 8.0 335 85 -45 4.39 0.4101
WVFGRD96 9.0 335 85 -45 4.40 0.4305
WVFGRD96 10.0 165 65 40 4.43 0.4566
WVFGRD96 11.0 165 65 40 4.44 0.4847
WVFGRD96 12.0 165 65 40 4.45 0.5043
WVFGRD96 13.0 165 65 35 4.46 0.5177
WVFGRD96 14.0 165 65 35 4.47 0.5256
WVFGRD96 15.0 160 70 30 4.48 0.5299
WVFGRD96 16.0 160 70 30 4.48 0.5315
WVFGRD96 17.0 160 70 30 4.49 0.5300
WVFGRD96 18.0 160 70 30 4.50 0.5262
WVFGRD96 19.0 160 70 30 4.50 0.5205
WVFGRD96 20.0 160 70 30 4.51 0.5131
WVFGRD96 21.0 160 70 30 4.52 0.5045
WVFGRD96 22.0 160 70 25 4.52 0.4950
WVFGRD96 23.0 160 70 25 4.53 0.4849
WVFGRD96 24.0 160 70 25 4.53 0.4739
WVFGRD96 25.0 160 70 25 4.53 0.4627
WVFGRD96 26.0 160 70 25 4.54 0.4514
WVFGRD96 27.0 160 70 25 4.54 0.4397
WVFGRD96 28.0 160 70 25 4.55 0.4281
WVFGRD96 29.0 160 70 25 4.55 0.4166
The best solution is
WVFGRD96 16.0 160 70 30 4.48 0.5315
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00