Location

Location ANSS

The ANSS event ID is us10004d82 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us10004d82/executive.

2016/01/10 02:03:31 32.938 -100.836 2.7 3.6 Texas

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2016/01/10 02:03:31:0  32.94 -100.84   2.7 3.6 Texas
 
 Stations used:
   IM.TX32 N4.237B N4.Z35B TA.435B TA.833A TA.MSTX TA.WHTX 
   US.AMTX US.JCT US.MNTX US.WMOK 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 4.32e+21 dyne-cm
  Mw = 3.69 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1      275    70   -30
   NP2       16    62   -157
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.32e+21      5     327
    N   0.00e+00     54      64
    P  -4.32e+21     35     233

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.99e+21
       Mxy    -3.34e+21
       Mxz     1.54e+21
       Myy    -5.99e+20
       Myz     1.42e+21
       Mzz    -1.39e+21
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                  #################----              
              # T ##################------           
             ##   ##################-------          
           #########################---------        
          ##########################----------       
         ###########################-----------      
        ############################------------     
        #######-----------------####------------     
       ##---------------------------####---------    
       -----------------------------#########----    
       ----------------------------#############-    
       ----------------------------##############    
        --------------------------##############     
        --------   --------------###############     
         ------- P -------------###############      
          ------   ------------###############       
           -------------------###############        
             ----------------##############          
              --------------##############           
                 ---------#############              
                     --############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.39e+21   1.54e+21  -1.42e+21 
  1.54e+21   1.99e+21   3.34e+21 
 -1.42e+21   3.34e+21  -5.99e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160110020331/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 275
      DIP = 70
     RAKE = -30
       MW = 3.69
       HS = 3.0

The NDK file is 20160110020331.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2016/01/10 02:03:31:0  32.94 -100.84   2.7 3.6 Texas
 
 Stations used:
   IM.TX32 N4.237B N4.Z35B TA.435B TA.833A TA.MSTX TA.WHTX 
   US.AMTX US.JCT US.MNTX US.WMOK 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 4.32e+21 dyne-cm
  Mw = 3.69 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1      275    70   -30
   NP2       16    62   -157
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.32e+21      5     327
    N   0.00e+00     54      64
    P  -4.32e+21     35     233

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.99e+21
       Mxy    -3.34e+21
       Mxz     1.54e+21
       Myy    -5.99e+20
       Myz     1.42e+21
       Mzz    -1.39e+21
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                  #################----              
              # T ##################------           
             ##   ##################-------          
           #########################---------        
          ##########################----------       
         ###########################-----------      
        ############################------------     
        #######-----------------####------------     
       ##---------------------------####---------    
       -----------------------------#########----    
       ----------------------------#############-    
       ----------------------------##############    
        --------------------------##############     
        --------   --------------###############     
         ------- P -------------###############      
          ------   ------------###############       
           -------------------###############        
             ----------------##############          
              --------------##############           
                 ---------#############              
                     --############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.39e+21   1.54e+21  -1.42e+21 
  1.54e+21   1.99e+21   3.34e+21 
 -1.42e+21   3.34e+21  -5.99e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160110020331/index.html
	
Regional Moment Tensor (Mwr)
Moment	3.466e+14 N-m
Magnitude	3.63
Depth	3.0 km
Percent DC	67%
Half Duration	–
Catalog	US (us10004d82)
Data Source	US1
Contributor	US1
Nodal Planes
Plane	Strike	Dip	Rake
NP1	12	81	-178
NP2	281	88	-9
Principal Axes
Axis	Value	Plunge	Azimuth
T	3.736	5	327
N	-0.626	81	89
P	-3.110	8	236

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
br c 0.12 0.25 n 4 p 2
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   280    70    -5   3.57 0.4940
WVFGRD96    2.0   280    75   -10   3.62 0.5335
WVFGRD96    3.0   275    70   -30   3.69 0.5528
WVFGRD96    4.0   275    70   -30   3.72 0.5525
WVFGRD96    5.0   100    55    -5   3.73 0.5515
WVFGRD96    6.0   100    55    -5   3.74 0.5483
WVFGRD96    7.0   100    60     0   3.75 0.5435
WVFGRD96    8.0   100    55     0   3.78 0.5393
WVFGRD96    9.0   100    60     0   3.78 0.5329
WVFGRD96   10.0   290    65    35   3.80 0.5316
WVFGRD96   11.0   290    65    35   3.81 0.5315
WVFGRD96   12.0   290    65    30   3.81 0.5292
WVFGRD96   13.0   285    70    25   3.82 0.5276
WVFGRD96   14.0   285    70    25   3.83 0.5245
WVFGRD96   15.0   285    70    25   3.84 0.5206
WVFGRD96   16.0   285    70    25   3.84 0.5157
WVFGRD96   17.0   285    70    25   3.85 0.5096
WVFGRD96   18.0   285    70    25   3.86 0.5029
WVFGRD96   19.0   285    70    25   3.87 0.4955
WVFGRD96   20.0   285    70    25   3.88 0.4875
WVFGRD96   21.0   285    70    25   3.89 0.4792
WVFGRD96   22.0   285    70    25   3.90 0.4709
WVFGRD96   23.0   285    70    25   3.90 0.4618
WVFGRD96   24.0   285    75    30   3.91 0.4532
WVFGRD96   25.0   285    75    30   3.92 0.4447
WVFGRD96   26.0   285    75    30   3.93 0.4361
WVFGRD96   27.0   285    75    30   3.94 0.4280
WVFGRD96   28.0   285    75    30   3.95 0.4200
WVFGRD96   29.0   285    75    30   3.95 0.4121

The best solution is

WVFGRD96    3.0   275    70   -30   3.69 0.5528

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 12:48:39 PM CDT 2024